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ABSTRACT
THE EFFECT OF A BRANS-DICKE COSMOLOGY UPON
STELLAR EVOLUTION AND THE EVOLUTION OF GALAXIES
Michael John Prather

Yale University 1976

This thesis examines the effect which a variable G cos-
mology, such as Brans-Dicke, will have on the evolution of
individual stars and of galaxies composed of these stars in
the hope that present day observatioﬁ of globular ciusters
or giant elliptical galaxies will provide a test for the
Brans-Dicke theorf. The higher value of the gravitational
coupling coefficient G in the past histdry of various Brans-
Dicke universes is studied in detail. A low-density, open
universe is selected for study: fractional closure density

= 0.2, present Hubble constant = 55 km/s/Mpc, stellar forma-

tion 2t a redshift of 5, and the Brans-Dicke parameter omega
= 6.

In this universe a set of stéllar evolutionary tracks
is computed from the Zero-Age Main Sequence through the Giant
Branch to the Horizontal Branch for approximately'solar com-
position, (Y,Z) = (0.25,0.02). When compared at equivalent
evolutionary phases, the luminosity of individual stars is
found to increase greatly with G from the ZAMS to the HB.
The higher G greatly speeds up the evolutionary time scale

fcr the main sequence, and it decreases the core mass at the

helium flash, leaving the luminosity of the tip of the GB
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end the HB unchanged. The net effect of a higher G on a
cluster of stars is to increase the apparent mass at the
turn-off and to reduce the lifetimes of all the evolutionary
pﬁases from the ZAMS to the HB by the same factor. Thus,
the relative number density of stars in the major phases of
stellar evolution is unchanged.

A set of metal-poor stellar tracks are computed from
the ZAMS to the base of the GB in order to simulate the turn-
off and sub-giant regions of globular clusters. At the pre-
sent epoch the only difference caused by the higher G in the
past is the increase in the apparent age of the cluster.

Single-generation, solar abundance models of giant

.€lliptical galaxies show a substantial evolution of the inte-

grated galactic magnitude but have a very small evolution of
the integrated colors. The colors and magnitudes of the
variable G models evolve almost parallel to those of the con-
stant G models and do not display the expected increase in
luminosity with G. The only difference between the two models
is that the Brans-Dicke galaxy appears older, and hence redder.
Thus, the effects of a moderately higher value of G in
the past are unobservable, as are the effects of a moderately

higher G in a nearby cluster.
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CHAPTER I. INTRODUCTION
§1. General Relativity and Brans-Dicke

When the general theory of relativity was presented by
Einstein (1916), it accounted for the 43"/century residual
precession of Mercury's perihelion that had been noted by
Leverrier (1859) and accurately measured 34 years before by
Newcomb (1882). The predicted deflection of starlight by
the sun was verified during the 1919 solar eclipse (Dyson,
Eddington and Davidson 1920), and the general theory gained
wide acceptance. Since that time Einstein's general theory
of relativity (henceforth GR) has survived all observational
tests and has become the "standard" theory of gravitation.

At present, the most viable alternative to GR is the
scalar-tensor theory of Brans and Dicke (1961), which pre-
dicts a variation of G with the age of the universe. In
this thesis I shall consider only the GR and Brans-Dicke
cosmologies. For a thorough review of the variety of
variable-G cosmologies and their astrophysical and geophys-
ical implications see Wesson (1973). The Brans-Dicke theory
(henceforth BD) is a Machian theory in that the local gravi-
tational field is affected by the total mass-energy distri-
bution of the universe. The BD theory contains a dimension-
less constant w and a scalar field ¢. The coupling constant
w is a measure of the deviation of BD theory from GR theory

(BD approaches GR in the 1limit w+«). The inverse of the
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scalar field ¢ is proportional to the local gravitational
coupling coefficient G.

As has been stressed by McVittie (1969), the BD scalar
field ¢--and hence G--is a function of both time and space.
For hydrostatic models which involve no time derivatives, the
temporal variation of ¢ presents no problems. However, if ¢
has strong spatial variations from the center to the surface
of a star, then the application of the non-relativistic
hydrostatic equilibrium equation--which includes a spatial
derivative and G--will no longer be valid. Eardley (1975)
points out that the assumption of a spatially constant ¢ is
accurate if the star is non-relativistic. He derives the

center-to-surface variation of ¢ (or G) in BD theory which is

P%l ) |ig " e | (1)

to first order in U/c? where U is the Newtonian gravitational
potential. Thus, the spatial variations of ¢ are insignifi-
cant (v10°° for a white dwarf star with w = 3), and I shall
assume that the temporal variations of ¢ can be computed

from a homogeneous, isotropic universe.
§2. Observational Evidence

The BD predicted rate of decrease in G at the present
(equation II.9) is theoretically observable and would pro-
vide a direct test of the theory. The preliminary upper
limits of [8/G|, < 4-107'° yr-'from radar observations of

planetary motions (Shapiro et al. 1971) could only rule out
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the densest of the BD universes. The more recent results
are not yet decisive.
(6/6)y = +4 £8-10-11 yr-1 (Shapiro 1974) (2)
= -8 +5-10"!1 yr-1 (van Flandern 1975) (3)

In addition to the predicted decrease in G, other nota-

"ble differences between BD and GR include the classical tests

of: (i) the deflection of starlight by the sun where BD

predicts a smaller deflection,

o(BD) = $223-0(GR) ; (4)

and (ii) the precession of Mercury's perihelion where BD also

predicts a lower rate,

84 (BD) = 3WL. 44 (GR) . (5)

While optical measurements of the deflection of 1light are
limited to solar éclipses and are unlikely to be able to
differeﬁtiate 5etween BD and GR, radio observations (Counsel-
man et al. 1974, Fomalont and Sramek 1975) may soon be suf-
ficiently accurate to discriminate. The precession of Mer-
cury's perihelion can be compatible with BD if the sun is
oblate by a factor of 5-10~9 (Dicke 1964). However, this
degree of oblateness is extremely difficult to measure to
any degree of concordance {Dicke 1974, Hill et al. 1974,
Hill and Stebbins 1975).

The effects of BD theory on nucleosynthesis in the early
universe have been investigated by Greenstein (1968). With

regard to the primordial production of deuterium and helium,
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he finds no observable differences between BD and GR models

except for the high density BD universes which produce

excessive amounts of helium.

§3. Stars and Variable G

I propose to examine the differences between BD and GR
by employing what are possibly the most sensitive instruments

to detect changes in G: the stars. As was first pointed

out in homology arguments (Teller 1948), the luminosity of
a main sequence star is a highly sensitive function of
gravity (L ~ G”). These relatively higher luminosity stars,
formed at a larger G in a BD universe, will have evolved

more rapidly within the same time span than their counter-
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parts in a GR universe (Dicke 1962)f The greatest effect

will be found in the oldest population of stars which have

experienced a larger G for a longer period of time.
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For this reason I shall examine the effects of a BD
cosmology upon both the evolution of giant elliptical gal-

axies and the color-magnitude diagram of globular clusters.

Giant ellipticals provide one of the better tests because

é they are composed of o0ld stars and their brightness allows

; them to be observed at large redshifts. Globular clusters

% ’ supply more detailed data of the oldest stellar component of
: our galaxy, but they can only be observed at the present

E epoch (i.e., G = G;). The integrated colors and magnitudes

of nearby giant ellipticals can be used to specify free

parameters in the models (e.g., initial mass function).



BRSNS S b e Al AR 4 L i e R AR T

i
[3
3
3
2.
|3
4
I
[
£
s

T AT AT

I
e
v
¢

X R W A8 T ATTERS PTG ¥ AR P VR AN ST IR ¢

Then, the more distant giant ellipticals can test the pre-

dicted backwards evolution of these quantities.
§4. The Brans-Dicke Variable G

The variations of G in a BD universe are studied in-
Chapter II. In that chapter the GR and BD cosmological
models, wnich are to be used in the galaxy synthesis, are
selected and described. A series of evolutionary tracks for
a constant G = G, and for a BD variable G are computed with
the stellar evolution code described in Appendix A. The

detailed effects of a variable G upon these stellar models

is examined in Chapter III. For the first time, the variable

G evolution is followed beyond the main sequence through the

giant branch to the horizontal branch.

In Chapter IV,I shall examine the effects of a BD uni-

verse upon the distribution of stars in a simulated color-
magnitude diagram of an old metal-poor globular cluster.
For the construction of these diagrams and for the later
synthesis of galaxies, a new method of evolutionary-track
interpolation and isochrone construction is described in
Appendix B.

The synthesis of giant elliptical galaxies from the
evolutionary tracks of Chapter III is completed in Chapter V.
This is the first such synthesis to be made from a complete
set of tracks which span the evolution from the zero-age
ﬁain sequence to the horizontal branch. In Chapter V,I shall

follow the backwards evolution of the integrated luminosities



and colors of these galaxy models to determine the differ-
ential effects between the GR and BD models. I shall con-
clude in Chapter VI whether the differences in stellar

evolution caused by BD theory are possible to detect.
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CHAPTER II. THE COSMOLOGICAL MODELS -
§1. The Brans-Dicke Equations

é for the Brans-Dicke (Brans and Dicke 1961, henceforth

{ BD) models investigated in this paper, I shall assume that
the universe is always matter-dominated and has a zero cosmo-
é logical constant. The cosmological models resulting from
the general relativity (GR) theory of Einstein (1916) are

the Friedmann (1922, 1924) models which are derived from the

Einstein equations. These equations (Weinberg 1972)

R, ,.R? -
E + 2-§2 + 2-§2= 4nGp, (2)
reduce to
.2 .
%2"' ‘11';‘ = —81:,:(3‘0, (3)

where R is the arbitrary cosmic scale factor, p is the density,
and k is a constant = 0, *1. In BD the constant G is replaced
by the scalar field ¢, and the equivalent Einstein equations

then yield (Weinberg 1972)

R _ _87p, w+2 $2 _
& 3 -—— oz -2 4
: s k- (4)
E .gz K 8o, w+tl _ ¢.R
? R + 2 R2 + 2 Rz = ¢ _Q)T 3 ﬁ . (S)
These equations reduce to
Rz k _ 8mo _ 6.R, w.d %
R2" R2™ T35 T 3R 6 g2’ )

MEN DTPRNTTRSARTE IR SO N0 GRTTT TEATRY
[o ]



where the derivative of the scalar field is

5 = 8mpt ;[ C 7
¢ 2w+3 R3 ? ( )

t is the age of the universe, and w is the dimensionless
coupling constant. The BD theory approaches GR in the 1limit

I shall adopt the constraint initially propesed--but

since relaxed--by Brans and Dicke (1961) that 6R® » 0 as R » 0.

Hence, the constant C = 0, and ¢ increases toward the future.

TR AT O R

The local gravitational coupling coefficient G, as measured

by non-relativistic test particles, is not a constant but is

v
k:
£

a function of the scalar field ¢.

G = 2w+4,1

= 8
20+3 ¢ (8)

Thus, the value of G was greater in. the past and is presently

decreasing at the rate,

. é . _ _ 81Gopoto
[G]o =T Terd o, (9)

where the subscript , refers to the present value of the

quantities.

§2. Solution of the Cosmological Equations

In order to describe the previous history of a BD umni-

&
gr
&
2
<

verse, one must specify the present values (subscript ,) of
(i) the expansion rate or Hubble constant H, where

H, = [1%]0, (10)

(ii) the density or Q where,

= = .81TG
8 = po/pcrit Po 3H20 H] (11)
0

B REARSIE AT M I PR SRR MR IR Ry
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and (iii) the value of the scalar field or Go. The critical

E densit .
! 4 pcrlt

: values of Q <1, @ =1 and @ > 1 correspond to open (k=-1),

is defined for the GR models such that the

flat (k=0) and closed (k=+1) GR universes. While the

4 Friedmann (1922,1924) solutions to the GR theory are well
known and analytic under the present assumptions, the BD
models are rarely studied except for the analytic flat-space

model. In a BD flat universe the requisite density is

greater than the GR critical density,

} = (3w+d)+ (w+2)
p (BD flat-space) To(er )2 Perit (12)

as might be predicted since the gravitational coupling is

T AN PR T T (PR R T AR AN

weakening with age. The solutions for R and ¢ are then

.
b
/’K'.
.

I

2w+2
: R o towtd (13)
? 2
¢~ t30%4 (14)
;' and the present age is
lv -— '1. 2w+2
t, = H, [m} . (15)

For all other BD models one must solve numerically

equations (6) and (7) subject to the conditions: (i) conser

. -3 . .
vation of matter, p © R "; (ii) present values of H,, 2 and

&
K
&
bl

$o; (iii) R and t both go tc zero at the origin, R(t=0) = 0.
In order to start the integration backwards in time, one
selects a value of t; and uses the values of Hy, Q and ¢, to
determine the value of R, and the sign of k. One then inte-
grates backwards in time to the origin.to see if condition

(iii) above is fulfilled. 1In general one finds either (a)

S (YT TSR TR RN R BT ¥ Y AT B 4



T ITIRVIRY DR

IR PURN TN TN

) R TR AU PRRACT TN GO0F M ¢ TR SRR X IRSHEDIR o T

11

t - 0 with R finite in which case the Selected t, is too 1low,
or (b) R+ 0 with t finite in which case the selected t, is
too high. The true age t;, is found by selecting two ages
which must bound the true age,

0 < t%°w <t, < t%i < Hgl s (16)

~and then applying a binary chop. The value t, = %(t}ow+t%1)

is used for the integration. In case (a) one redefines
t%ow = t,; in case (b)} t%l = t,. This process is repeated

until the true age is bracketed to satisfactory accuracy.

Since the density is given in terms of @, the resultant
age fraction (t,+H,) is independent of the assumed Hubble
constant. The age fractions thus calculated are given in
table 1. The cmalytic values for the GR models are included
in order to compare them with the computed values for the
BD models with w = 10'? which should approach the GR limit.
The range of values in w bounds the limits considered to be
most probable by Dicke (1974), 5 < w < 9. For the cases in
table 1 the difference in universe ages between the GR and
BD models is small and increases from -1% to +3% as the
density increases.

At large densities the age for a BD universe 1is less
than that for the corresponding GR universe as would be
naively expected. In BD models the gravitational coupling
was greater in the past; and thus the initial expansion of
the universe wouid have slowed more quickly; and thus the
universe would reach its present state in less time.

However, in low-density models the BD age exceeds the GR age.
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This phenomenon occurs because the ¢-field can actually reduce

the deceleration. By comparing equations (1) and (4) at the

present,

£ R1BD 1 3w R)GR
« [ﬁjo = orzt (@ ¢ 3(-t H)) ¢ gaeg ot )R] . (A7)

one can see that the coefficient is less than unity in low-

density models (Q<<1, t,H,=1). Thus, the acceleration back-

YD RO PRI I RO

wards to the origin starts off at a slower rate and yields

a greater age.

Once the age of a given BD universe is determined, any

quantities from the present or past history of the model may

ST L N M N T TR

be calculated. For example, the present rate of decrease in

G calculated from equation (9) with the values of table 1 is

SR s So A Pt il Sate ) £ vl

" shown in table 2. These values for all of the models consid-
ered are within the most recent 1limits (equation I.2) of

Shgpiro (1974). However, the results (equation I.3) of van

Flandern (1975) are compatible only with BD models of high
density or large Hubble constant.

Henceforth, I shall no longer be concerned with the

o
%4
1
=
B
&
o
[
v
it
P
&
Z

present changes in G, but rather with its previous history.

The increase in 1log(G/Gy) with redshift in a BD universe is

shown in figures 1 and 2. Figure 1 shows the effect of dif-
fering density universes with a fixed w = 6; and figure 2,
for differing w-values with a fixed density Q = 0.20. Since
the density is defined in terms of @, the function G(z) is
independent of the choice of Hubble constant. The gravita-

tional coupling coefficient G rises more steeply and reaches

y
E—.
g
|

higher values at a given redshift when either the present




13

density (in terms of Q) is increased or the coupling constant
w is decreased. In very low density universes (Q < 0.02) the

é increase in G back to a redshift of z = 10 is negligible.

§3. Selection of Model Parameters

IR TR A TRIERTIT Y,

AN

Unfortunately, in a study of this kind one has a multi-

7

tude of parameters which must be fixed. I shall now set all

3 NIRRT MR

of the parameters necessary for the cosmological model and

try to justify them. For the BD theory in particular, one

LA S AR AR

é must specify the dimensionless coupling coefficient w. I
é shall set w = 6 which is the lower 1limit initially proposed
by Brans and Dicke (1961) and is within Dicke's (1974) more
recent range of values. The previous assumption that $R3+ 0
as R » 0 eliminates the need to fix a second BD parameter.

The present expansion rate in terms of the Hubble constant

YT T T TR AR

is taken to be Hy = 55 km/s/Mpc. This value is coﬁsistent

g\,},
e
15
&

o8
55

with the most recent measurements (Harris 1974, Kirshner and
Kwan 1974, Sandage and Tammann 1974) and gives a GR critical

density of p_.:y = 5.7-107%%gm/cm®. The present density of
crit g

the universe is assumed to be Q = 0.20 or po = 1.131073%gm/cm?3.
This assumption is consistent with recent results that the
universe is open, but it is slightly denser than the value
of @ = 0.06 preferred by Gott et al. (1974).

Now that the cosmological parameters are set, one is
left with the determination of when the stars in the giant

elliptical galaxies were formed and when the globular clus-

ters formed. Although all of the stars in a giant elliptical

) PTRYRETING S0 RO YR TS PR AR ALY B R AR P Y



were obviously not formed at the same instant in time, I

shall assume, as have other authors (Tinsley 1972), that the

star formation occurs in a single burst. Larson's (1974)

model calculations of elliptical galaxies support this assump-

pX IR fe sl orh Sttt

tion while displaying a realistic spread in star formation.
These models show a distinct peak in star formation which

occurs in a free-fall time and then predict a rapid decline

e Y AT A T R I TR Y

with little or no star formation at the present.

In addition to simplifying the overall model and elim-
inating further parameters, the single-generation hypothesis
is necessary for computational moderation. Ideally, one
should synthesize the stellar population of these giant

ellipticals with groups of stars formed over an interval of

time in the early universe. This procedure is straight for-
ward for stellar models constructed with a constant G since
the evolutionary tracks can be shifted arbitrarily in time

with respect to the age of the universe. But when G varies
as in a BD universe, the evolutionary tracks are fixed to a

specific time of birth. They cannot be shifted to a new

birthtime--a new G--but must be entirely recomputed.

g A birthtime for the giant elliptical galaxies can be
given in terms of either the age of the universe tyirth ©°F
the redshift Zhivth® Kristian (1973) finds quasars to be

embedded in the center of giant ellipticals whenever the

galaxy itself should be discernible. If one postulates that

even the most highly redshifted quasars are both cosmological

and associated with giant ellipticals, one can set an obser-
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vational lower 1limit to the redshift at galaxy formation:

2y srth 2 3. With regard to thecretical limitations, Larson's

(1974) models predict a range in t of from 0.8 to 2.7 Gyr.

birth
In order to compare these times withrredshifts, the age of a
universe with H, = 55 km/s/Mpc is plotted against the present
density in figure 3 for a range of redshifts z = 3, 5, 8.

The ages in figure 3 apply to both a GR universe and a BD
universe with w = 6, and they scale as Hgl. For the case Q

= 0.20 the range in redshift of 3 < z < 8 roughly spans the
age range predicted ty the theoretical models. The only

incompatibility between the ages and the redshifts occurs

for the high density universes where thirth 2 1.0 Gyr implies

- Zpirth § 3-

As a test of the sensitivity of the overall model to
the exact choice of zpjrth, I shall compare the ranges of
stellar evolution times in the redshift range 3 < z < 8.

For a universe with H; = 55 km/s/Mpc (either GR or BD with w
= 6) the look-back time is plotted against redshift in

figure 4 for a range of densities. These look-back times

are a measure of the stellar evolution times for a constant
G = G,. For a larger G the time scale of stellar evolution
is speeded up (L ~ G7, Teller 1948),and the resulting evolu-
-ionary times are the integrated look-back times weighted by
(G/G,)7. 1In all the cases of figure 4 the GR evulution times
vary slightly (=10%) over the range in redshift, but the BD
evolution times can vary greatly, especially in the high

density models. Fortunately, in the assumed low density
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model {(=0.20) the variation over the redshift range of the
BD evolution time (14.8-18.5 Gyr) is not excessive.

Lacking any other information to more accurately deter-
mine Zyirth?® I shall assume an intermediate value of Zhirth
£ 5. I shall apply this birthtime to single-generation syn-
thesis models of both giant elliptical galaxies and globular
clusters. The two different universe models, which I shall
be comparing, are denoted STD (GR universe with H, = 55 km/s/
Mpc, @ = 0.20, Zhirth = 5) and BDI (BD universe with w = 6
gnd the same parameters as the STD model). A 1list of red-
shifts, ages, and G-vaiues for the STD and BDI models is

given in table 3.
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TABLE 1.

FRACTIONAL AGES (t,-H,)

FOR BRANS DICKE-UNIVERSE MODELS

17

Q@ = 0.028 0.200 0.600 1.000 2.000

GR 0.956524 0.846492 0.731896 0.666667 0.570796
= 1012 0.956524 0.846492 0.731896 0.666672 0.570796
= 12 0.959231 0.850037 0.732008 0.663955 0.563747
= 6 0.961363 0.852977 0.732514 0.662513 0.559479
= 3 0.964521 0.857549 '0.733862 0.661321 0.554775
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TABLE 2. PRESENT RATE OF DECREASE IN G
FOR A BRANS-DICKE UNIVERSE
-(é/G)o in units of (H,/55 km/s/Mpc) yr'l

Q@ =0.028 0.200 0.600 1.000 2.000

4.6(-13) 2.9(-12) 7.4(-12) 1.1(-11) 1.9(-11)
2.8(-13) 1.8(-12) 4.6(-12) 7.0(-12) 1.2(-11)
1.6(-13) 1.0(-12) 2.6(-12) 4.0(-12) 6.8(-12)
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TABLE 3. THE STD AND BDI MODELS

H, = 55 km/s/Mpc Q = 0.20
GENERAL BRANS-DICKE
RELATIVITY (w = 6)
Redshift Age(Gyr) Age (Gyr) G/G,
0.00 15.049 15.164 1.0000
0.05 14.204 14,319 1.0016
0.10 13.440 13.554 1.0032
0.20 12.113 12.224 1.0063
0.30 11.001 11.107 1.0093
0.u0 10.056 10.158 1.0123
0.50 9.2U6 9.341 1.0153
0.60 8.5u42 8.633 1.0182
0.70 7.927 8.012 1.0210
0.80 7.386 7.465 1.0238
0.90 6.905 6.979 1.026¢
1.00 6.476 6.5u45 1.0293
1.20 5.7u4Y4 5.804 1.0347
1.u0 5.1u44 5.195 1.0398
1.60 4, 64y L.688 1.0u4u9
1.80 y,222 4,259 1.0498
2.00 3.862 3.892 1.0546
2.20 3.551 3.576 1.0592
2.40 3.280 3.300 1.0637
2.60 3.043 3.Q59 1.0682
2.80 2.834 2.845 1.0725
3.00 2.6U8 2.656 1.0767
3.50 2.263 2.263 1.0869
4.00 1.964 1.959 1.0966
4,50 1.726 1,717 1.1058
5.00 1.533 1.521 1.11u6
5.50 1.374 1.359 1.1230
6.00 1.241 1.224 1.1311
7.00 1.031 1.011 1.1463
8.00 0.875 0.853 1.160u

19
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Fig.1.---Log(G/G,) vs. z. The increase in G with redshift z

for a Brans-Dicke universe with w = 6 is shown for
models with differing densities Q, where Q = p°/pcrit
= p,*3H2/81G,. The function G(z) is independent of

the Hubble constant.



P T N YNARTITIEYY

TAWIPITS

PP

22

Fig.2.---Log(G/G ) vs. z. The increase in G with redshift z
for @ = 0.20 is shown for a Brans-Dicke universe with
different values of w. The function G(z) is indepen-

dent of the Hubble constant.
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Fig.3.---Age of the universe at different redshifts z vs. the

present density Q. At a fixed redshift the age of

the universe decreases as the fractional closure den-
sity @ increases. The ages given are for a Brans-Dicke
universe with w = 6 but differ unnoticeably from the
General Relativity models. The ages correspond to

Hy = 55 km/s/Mpc and scale as Hgl.
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Fig.4.---Look-back time vs. z. The look-back time as a

function of redshift z is shown for a Brans-Dicke
universe with w = 6 and Hy = 55 km/s/Mpc. The
solid lines represent the direct time difference
between the present age of the universe and the age
at the given redshift; the dashed lines are the
integrated time differences weighted by (G/G,)? The

curves are labelled with the fractional closure

density Q.
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CHAPTER I1I. THE EFFECT OF G ON STARS
§1. Introduction

The static cffects of a decreasing gravitational coupling
coefficient G upon the evolution of stars will be examined in
extensive detail. A series of stellar models are evolved
from the zero-age main sequence (ZAMS) through the giant branch
(GB) to the horizontal branch (HB) for the Brans-Dicke model
proposed in Chapter II (BDI: w=6, H,=55 km/s/Mpc, 9=0.20).
The results of this examination significantly extend the know-
ledge of the effect of G # G, upon stellar evolution. The

generalized effects of G which are derived in this chapter

~are not restricted to the particular Brans-Dicke model.

Early work in this area (Teller 1948, Gamow 1967) used
homology arguments to claim L ~ G’ on the main sequence. This
result was then applied to the sun to rule out the extreme
case G v~ t-! (Dirac 1938) based upon either the temperature
(feller) or the age (Gamow) of the earth. Pochoda and
Schwarzschild (1964) first constructed solar models for a
variable G of the form G ~ t ™. They also found it difficult
to produce an acceptable model of the sun for the extreme case
of n = 1, but were easily able to construct a solar model for
the case of n = 0.2--equivalent to Brans-Dicke flat space
with w = 2. Roeder and Demarque (1966) also computed solar
models for a range of Brans-Dicke flat-space universes (w =
4,6,8; Hy = 75,100,113 km/s/Mpc). The& were able to fit

these models to the observed present-day sun by a reasonable

25
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variation in the initial chemical composition. Ezer and
Cameron (1966) followed the evolution of a solar model from
the early contraction phase through to an age of 4.5 Gyr for
a single Brans-Dicke model (w = 5; Hy = 75 km/s/Mpc, t, = 7.0
Gyr). Compared with a standard model, their variable G model
showed less lithium depletion and a factor of 4 increase in
the present-day B® neutrino flux.

Interest in the solar-neutrino problem (see review of
Bahcall and Sears 1972) also provoked Shaviv and Bahcall (1969)
to construct a wide variety of Brans-Dicke solar models. For
all of their decreasing-G mcdels they found an increase in
the expected neutrino flux, thus increasing the discrepancy
between observation and theory. All of these studies have
been limited to the effect of a decreasing G upon the sun and
the earth and are unable to rule out any reasonable Brans-
Dicke model. The increase in the neutrino-flux fof the Brans-
Dicke models cannot be considered conclusive evidence against
these models since even the standard models are unable to
match the extremely low observed value.

The effect of a Brans-Dicke universe was extended beyond
the solar models by Dicke and Peebles (1965) who used the
homology result L ~ G’ and a variation G ~ t . They derived
effective ages for cluster turn-offs assuming that the turn-
off age ~ fL™*dt. Their results are limited, however, by
the accuracy of the homology relation and to the flat-space
Brans-Dicke models. Roeder (1967) computed a series of turn-

off tracks in the mass range 0.9 Mgto 1.4 My with composition
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(X,Z) = (0.68,0.03) for Brans-Dicke flat-space model with
w=6 and H; = 75.km/s/Mpc. His empirical result L ~ G7’02
agrees remarkably well with the earlier homology results for
the main sequence. The resulting cluster models from the
Brans-Dicke tracks could be fitted to observed clusters equally
as well as the standard models. These models are restricted,
however, to main-sequence turn-offs and to cluster ages of
less than 3 Gyr out of a universe age of 8.8 Gyr; Tinsley
(1972) is one of the few prople to even comment on the effect
of G upon advanced stellar evolution. She claims that the
integrated GB luminosity for a star is independent of G since
the amount of hydrogen burned an the GB 'is unaffected by G.
All of these efforts, with the exception of Tinsley,
have been restricted to main-sequence evolution of solar-type

models with ages significantly shorter than the age of the

~universe. In this chapter I shall follow the evolution

through to the HB of solar-composition stars which formed
very early in the history of a Brans-Dicke universe and,
hence, have experienced a larger G over a longer period of
time than their recently formed counterparts. These models
are evolved under the conditions particular to a specific
Brans-Dicke universe (BDI) and will be used for galaxy syn-
thesis in Chapter V. For the present, however, I shall gen-
eralize the results as much as possible in order to derive
the effects of G upon evolutionary phases which may be con-
sidered independent of the previous history of G. 1 will

compare my main-sequence results with the previous studies
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and will present new information about the effect of G upon

the GB and the HB.

The selection of stellar models to be constructed was
based upon the primary objective of galaxy synthesis and also
3 upon a generous but still finite computing budget. The evo-
lutionary sequence computed with a constant G for the STD
universe model ranges from 0.5 Mg to 1.2 Mg in intervals of
0.1 My; the BDI (w=6, $=0.20, Ho=55 km/s/Mpc, zbirth=5)
sequence ranges from 0.5 M6 to 1.1 Mg. The close spacing in
mass of these tracks provides a sufficiently fine grid for
the construction of isochrones, and the 0.5 Mg track allows
the position of the lower main sequence to be properly

located. In order to span the same range of ages for both

IRNOTYYY
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sets of tracks, the STD medels are computed up to 1.2 My

(GB age 6.5 Gyr), while the BDI models only go up to 1.1 Mj

(GB age

6.2 Gyr). The computing limitations allowed for

the calculation of only four GB tracks (=75% of computing

T TOR XANTITS

budget). Because both the STD and the BDI universe models

have approximately the same age range of 1.5 Gyr to 15 Gyr

from a redshift of z

5 to the present, the GB tracks were

selected in order to span equivalent age ranges from z = 0.8

o ddicsinicha Bt hAtdil

to z = 0.0 (7.5-15.1 Gyr): 1.2-1.0 My STD (8.0-14.3 Gyr) and
1.1-0.9 Mg BDI (7.7-17.1 Gyr).

The evolutionary sequences start at the chemically homo-
geneous ZAMS and are computed with the evolution code which
is described in Appendix A. This evolution code is a standard

Henyey-type code (Henyey, Forbes and Gould 1964) and was

R B I T AN SN (AR F I O
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written specifically by the author for the purpose of this
research. The chemical abundances were chosen to be solar-
type composition, (X,Y,Z) = (0.73,0.25,0.02), and a mixing
length equal to one pressure-scale height (2/H = 1) was used
for the computation of the temperature gradient in the con-
vective envelope. The radiative opacities were taken from
Cox and Stewart (1970); and the thermonuclear reaction rates,
from Fowler, Caughlan and Zimmerman (1975). Appendix A con-
tains full details of the calculations.

For the STD evolutionary sequences the value of G was
keld constant to its present-day value of G,. For the BDI

sequences the value of 1log(G/G,) was computed from s = log(t,/t)

_where ' :

t, = present age of the universe = 15.16 Gyr,
t = age of the universe at the time of the model,
= age of stellar model + t(z=5),

t(z=5) = 1.521 Gyr.
A least-squares fitting of log G vs. log s for the BDI uni-
verse model was applied over the range z = 5 to z = 0. The
resulting relation is used to calculate the value of G at
any point in the evolution of the BDI models.

10og(G/Ge) = 0.0271508s + 0.0201262-s?

Let us now examine how G affects stellar models by comparing

the BDI models with the STD models.

§2. The Static ZAMS

In examining the zero-age main sequence, we are interested
in the detailed effects of G upon chemically homogeneous static

models with regard to their influence upon (i) the position of
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the main sequence in the HR-diagram, (ii) the main sequence
lifetimes, and (iii) the behavior of the evolution at the
turn-off (e.g., prediction of gaps). An additional ZAMS
sequence was calculated in order to test the linearity of the
G-effects over a range of 1log(G/G,) = 0.0 (STD), +0.0472 (BDI),
and +0.0723. Furthermore, a pair of ZAMS for the composition
(Y,z) = (0.25,0.01) with log(G/G,) = 0.0 and +0.100 were

also computed to determine if the effects of G are independent
of small variations in metallicity. The (log L, lcg M)-
relationship for all five ZAMS is shown in figure 1. The
increase in luminosity with G is both uniform across this

mass range (0.5-1.2 Mp) and linear in log G. However, for

. larger masses or for larger values of G, the turn-over in

the mass-luminosity relationship--expected for the CNO-domin-
ated higher mass stars--will become noticeable. Thus, the
smooth linearity of the relations will be destroyed.

The theoretical HR-diagram for the three ZAMS of metal-
licity Z = 0.02 is shown in figure 2. For a given mass, the
increase in G causes a large increase in L,

L a G6.3'7.0 M4.7’

and a significant increase in the effective temperature,

1.0-1.5
Teff N G .

However, since the ZAMS shifts almost parallel to itself, the
net observable effect of G upon a cluster of stars is to
shift the main sequence as a whole by a small amount to the

blue,

Toee (ZAMS) ~ G0-2.
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Ignoring this small shift in Teoges the mass at a point on the
main sequence varies with G, M ~ 6"1-4. The resultant effect
on the surface gravity g of stars at a given luminosity on
the main sequence is small,

g ~ GM/RZ ~ GM- (Tige/L) ~ G004,
Allowing for the slight ZAMS shift in Teff’ a very small
positive variation cf g with G is expected,

g(zZAMS) ~ G*O0-4,

The uniform change in total 1uminosity of a star with
respect to G does not necessarily imply that all the other
quantities of main sequence evolution, such as core exhaus-
tion and time scales, may be rescaled in a similar manner.
Figure 3 shows the (fractional luminosity, mass)-relationship
for the Z = 0.02 ZAMS sequences. The fractional luminosity
due to the PP2, PP3 and CNO cycles is plotted; but the PP1
cycle is not included since it is dominant and always contri-
butes at least 90% of the luminosity in all of the models.

As can be seen in figure 3, an increase in G causes an

increase in the effective mass of the star. The behavior of

the central density and the central temperature with mass is

shown in figure 4 for the same ZAMS sequences. Once again,
with respect to the central temperature, an increase in G is
equivalent to an increase in mass. However, while the central
density does increase with G, it does not correspond to 2
straightforward mass shift.

As an example of these effects, consider the three stel-

lar models which are circled in figures 1, 3 and 4: 1.2 My
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(log G/G¢=0.0), 1.0 Mg(+0.047) and 0.9 Mg(+0.072). With
regard to their central temperatures and fractional luminos-
ities, one would judge all three stars to be alike. By com-
paring their total luminosities, one would point out that
even larger values of G are needed for equality. Contrary
to either of the above, by comparing central densities, one
would reduce the differences in G to create equality.

Aside from merely presenting the complex G-effects upon
the ZAMS models, I would like to resolve the various differ-
ences in order to be able to predict the main-sequence life-
time and the behavior at the turn-off. The turn-off of the

1.0 Mg model in the example will depend upon whether it ex-

.hausts its core as a 1.2 Mg or a 1.0 Mg standard model. This

matter is clarified by examining how the energy gemeration
e--and hence the burning rate--varies with mass fraction
throughout the star. Figure 5 shows the (log €, M)-relation-
ship for the 1.0 and 1.2 My standard models and for the 1.0 My
model with log(G/G,) = +0.047. It can be seen in figure 5
that (i) the higher value of G causes an increase in the
burning rate throughout the star; (ii) the new rates are basi-
cally a constant multiple of the burning rates of the standard
model ¢f the same mass; and hence, (iii) the star with a
higher G will leave the main sequence in the same manner as

a standard model of the same mass but in a shorter time.

The above conslusion holds only for the mass range and for

the G values such that a convective cofe does not develop and

dominate the core during hydrogen core-exhaustion. In order
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to study this latter effect, one must construct models with

higher masses (M > 1.2 Me) than those considered in this paper.

For the chemically homogeneous ZAMS one has the advan-
tage of being able to use homology results to compare with
the model calculations. The most straightforward derivation
of the homology relations uses the differential equations of
stellar structure (see Schwarzschild 1958, p. 96ff) assuming

that the star is in radiative equilibrium throughout.

dP/dm = - Gm/47r" : (1)
dr/dm = + 1/47r%p (2)
dL/dm = + ¢ (3)
dT/dm = - (3/4ac)-(x/T3)-(L/167E") (4)

One uses the dimensionality of these equations along with
(i) the perfect gas law, P v pT; (ii) an energy generation

of the form € ~ pTv; and (iii) an opacity of the form

K N p1+a/T3'5+B. The resulting proportionalities,
P.R* ~ GM? (5)
P.R¥*/T. v M (6)
L/P.To t v M (7)
T8 S+a+Bpu/iplte 4y (8
can be solved for the dependences upon G and M,
Pc " G1+4a-M2+4b (9)
T  n GlTEaMlP (10)
L Gv+(v+3)a.M(v+2)+(v+3)b (11)
R ~ G 2.MD , (12)
where a= (7.5 - v +8)/(2.5 + v + 3a - B) (13)
b=1(3.5-v-oa+8)/2.5+v+3a-8). (14)
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In order to determine the values of (v, @, 8), the full range
of stellar models was plotted in the (log p, log T)-plane.
The true form of the PP-chain energy generation, & v pT'Z/S-

exp{-3380/T1/3}, and the radiative opacities of Cox and Stewart

Lok Sl oo ok Sl pug g 2l

(1970) were examined in the (log p, log T)-region of interest.

The following values of (v, a, B) describe most of the vari-

ation: v=4,6 £ 0.5
a = -0.60 £ 0.06
g = -1.0 £+ 0.3 .

A comparison of the homology predictions with the model cal-

: culations is given in table 1 and demonstrates the compati-

a2

bility of the two independent methods. The results of pre-

7.02

vious studies,L ~ G7(homology) and L ~ G (Roeder 1967),

. are consistent with these new results.
F §3. Main Sequence Evolution

é I shall now turn from the study of the effects of a
' static G upon the ZAMS to the examination of the models evol-
ving under the decreasing G of the BDI model universe. The

; moment one allows evolution to proceed, one has difficulty

in separating the G-effects from the evolution effects. For

TRPEVIS
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the main sequence I claim that models of identical central
hydrogen abundance X_. are comparable; and similarly for the
giant branch, models of identical helium core-mass Mc' The
evolutionary tracks for the STD models and for the BDI models
are shown in the (log L, log Teff)-plane in figures 6 and 7,
respectively. In the theoretical HR-diagram the most obvious

difference between the two sets of tracks is the main-sequence
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dip in the BDI models. These models decrease in luminosity
as G decreases until X. = 0.50. At this point the evolution-
induced increase in luminosity overcomes the G-induced de-
crease in luminosity and the subsequent evolution of the BDI
models resembles the STD models.

For the moment, consider the change in luminosity due
to a change inG from the main sequence to the base of the
giant branch. In figure 8 the difference 'in luminosity be-
tween the BDI and STD modéls of a star at equivalent evolu-
tionary phases (i.e., the same XC or MC) is plotted against
the 1log(G/Gy) value of the BDI model. The models with Xe >
0.20 seem to fall along the relation L ~ G6°6. However, the
models with X. < 0.01 up to M. = 0.170 fit best to the rela-
tion L ~ G4'0. Thus at the point near hydrogen core-exhaus-
tion (0.20 > X, > 0.01), there is a transition in the stellar
structure which causes a change in the luminosity's dependence
upon G (e.g., a shift from core burning to shell burning).

In order to predict the main-sequence lifetimes, one
assumes that the hydrogen burning rate for the bulk of the
main sequence is increased uniformly throughout the Staf by
an increase in G (shown for the ZAMS in §2). One.then expects
the same amount of hydrogen to be exhausted and the turn-off

times to be proportional to the time-weighted mean of the -

inverse of the luminosity,

turn-off
-6.6

Tturn_off v [ G dt . (15)
ZAMS
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The main sequence lifetimes of the BDI models agree well
: enough with this assumption (see Chapter IV for a more de-
tailed comparison of predicted and computed turn-offs).

One would like also to compare the time a star takes to
cross the HR-diagram from the turn-off to the base of the.
giant branch. Unfortunately, a relatively large amount of

time is spent by a star at core-exhaustion as compared with

TRy

this traverse time. Thus, for the small differences in G of
the BDI models the errors in determining the age of a model
at a specific evolutionary phase at the turn-off override

any detectable differences in the traverse time.
§4. The Giant Branch

In determining the effects of G upon the giant branch(GB),
I am limited to the study of the two BDI giant-branch tracks.
Alfhough G is monotonically decreasing as the stellar model
ages in the BDI universe, the time scale of evolution along
é the GB is sufficiently fast to consider these two GB tracks
as having a constant G: 0.9 Mg(log G/G, = -0.0014) and
1.1 Mg(+0.010).

As was pointed out in §1, the STD giant-branch trécks
were computed for different masses (1.0 and 1.2 Me), and thus
a direct comparison of the models for G effects is not possi-
ble. It is possible, however, to use the STD models to elim-
inate the effects due to a difference in stellar mass. As
an example, consider the four GB's in the (log L, log Teff)'

plane which are shown in figure 9. The effect of G upon the
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effective temperature of the GB may be non-zero, but it is
certainly small. For the 1.1 Mg BDI model the increase in
log Teff is at most +0.002 for the increase in log G of +0.010.

The dip in luminosity along the GB, which is caused by
the encounter of the hydrogen shell with the composition dis-
continuity left by the convective envelope, is denoted in
figure 9. Below this dip the hydrogen shell is burning
through the partially exhausted hydrogen profile which is a
remnant of the main sequeﬁce evolution. Since this profile
varies considerably with stellar mass, it is difficult to
compare models of different mass in this region.

Above this luminosity dip.the hydrogen shell is burning
through an envelope of constant composition, and the only
parameters of the static model are total mass, core mass and
G. While differences in the composition of the envelope
will affect the evolution of the models, the envelope compo-
sitions of the four models are almost identical. (The differ-
ence of 0.002 in the envelope hydrogen abundance among the
four models is not necessarily real, but is probably due to
the point structure of the models at the base of the convec-
tive envelope.)

The (luminosity, core mass)-relation for fhe four GB's
is shown in figure 10. Above the luminosity dip (M_>0.25)
the luminosity becomes independent of total mass for both STD
models. A crude graphical fit to the (L, M.)-relation for
the STD models above this dip yields,

log(L/Lg) = 5.10 + 3.32-log(Mc/My - 0.172) . (16)
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The G effects can be easily isolated from the mass effects
by comparing the BDI models with the STD models at a fixed
core mass, and they are listed in table 2. The obvious con-
clusion is that G has a very largé influence upon the struc-
ture of the individual models.

A region of great interest in GB evolution is the term-
inal phase of the GB, the helium core flash. In the computa-
tions the evolution was followed until the helium luminosity
exceeded 103 solar 1umino;ities (log LHe/Le > 3.0), at which
point it was assumed that the star leaves the GB for the
horizontal branch. A description of the four GB models at
the core flash is given in table 3.

The quantitative effect of G upon the core mass at the
helium flash was determined by using the STD models to pre-
dict the coremasses for a 0.9 and 1.1 Mg STD model. I then
applied the formula dM./dX = +0.2 (Sweigart 1975) fo make a
small correction for the difference in envelope abundance.
The resulting dependence 1is

M. ~ G-1-860.33 (0.9 Mg BDI)

Mc ~ G-1.51£0.05 (1.1 Mg BDI) ,
where the quoted error corresponds to an error in the core
mass of *0.0005 Mg.

These results agree remarkably well with the simple-
minded homology argument that is derived as follows. From
the stellar structure equations (1) and (2) one has

Pco v GMZ/RZ (17)

pc v M /RE (18)
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where the subscript . refers to the core values of mass and
radius and to the central values of pressure and density.
Combining these equations to eliminate the radius and assum-
ing that the core flash is triggered at a certain central

pressure--and hence density since the core is degenerate--

one derives

-1.5
M.~ G (19)

Perhaps the most interesting feature of table 3 is that
the maximum luminosity ofwthe GB at core flash is not very
s sensitive to G. The increase in L with G at a fixed core
' | mass is offset by the decrease of the core-flash M. with G.

One can estimate the G dependence by taking the (L, MC)—

. relation of equation (16), adopting Ln,G7 from table 2, and
: assuming the veracity of equation (19). 1In the region about
; M. = 0.47 one derives,

L(core £lash) ~ G™1 . (20)
While this result does not quantitatively agree with the

models given in table 3, it does predict the miidly inverse

relationship between L(core flash) and G which is shown by
the models.

Thus far, I have shown that G has little effect upon
either the shape of the GB track or its position or its extent
in the theoretical HR-diagram. The important descriptive
parameter which still remains is the time scale of GB evolu-
tion. The time interval spent by the four GB models in the
region log(L/Lg) = 2.0 to 3.0 is given.in table 4. The time

decreases as G increases since there is a lesser increment
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in the core mass (i.e., less fuel burned) over the same lum-
inosity interval. With equation (16) and the assumption

L~ G7, one can make an analytical estimate of the G effects,

T AM/L v G2 (21)
This crude result adequately describes the proportionality
to within a factcr of G which is shown by the BDI models in
table 4.

As a potentially observable criterion one would like to
examine how the 1uminosit§ function N(L) depends on G. For
a uniform mass distribution of stars N(L) is defined as the
number of stars expected in the luminosity interval (log L - %,
log L + %J. For a single GB track the luminosity function
can be defined empirically in terms of the time spent in a
given luminosity interval,

N(L) = t(log L + %) - t(log L - %) , (22)
or it can be defined theoretically,

N(L)

A/(31logL/3T) . (23)
An analytical evaluation of N(L), which is valid above the
luminosity dip, can be made from the time derivative of equa-
tion (16) and from

dMC(e)/dr(Myr) = 1.47-107°L(0) , ‘ (24)
which yields

N(L) = 1.4-107%-a/L(8)" 07  @ayr). (25)

The empirical luminosity function (equation 22) of the

1.2 Mg giant-branch track is compared in figure 11 with the
theoretical luminosity function of equation (25). The two

luminosity functions agree well above the luminosity dip,



PR TR T SN

41

but the theoretical form consistently underestimates the time
spent below this point. The empirical luminosity functions
for the other three GB tracks are not plotted because their
differences would not be noticeable on the graph scale of
figure 11 except in the region about the luminosity dip.

The sharp rise in N(L) at the lower luminosities correctly
predicts the relative overabundance of low-luminosity giant
stars.

In conclusion, the Gé can be treated as a static-G case
in the Brans-Dicke type universes due to its relatively short
time span. The major effect of an increase in G is to reduce
the lifetime of the GB. Secondary effects are the slight
reduction in luminosity at the top of the GB and the small

shift of the GB as a whole to the blue (Tggs ~ G<0-2).
§5. The Horizontal Branch

The four basic horizontal branch (HB) models were con-
structed as a continuation of the four GB models with the
core mass and shell structure existing at the helium core
flash. These models were reconverged with central helium
burning on the zero-age horizontal branch (ZAHB) and then
evolved along the HB. Only the 1.0 My STD model was evolved
to helium core-exhaustion because of the computing limita-
tions.

The HB star is presumed to leave the GB at the core
flash and to reappear on the ZAHB with the same hydrogen

shell structure and a uniform increase in carbon throughout



42

the helium core (Z=0.02 + Z=0.05). For the helium burning
jn the core, only the triple-alpha reaction is used; the
alpha-carbon reaction which is important during helium core
exhaustion is not included. The semi-convection which
greatly extends the HB lifetime was not treated rigorously
(Robertson and Faulkner 1972), but was approximated by the
forced convective overshooting described by Castellani,
Gianonne and Renzini (1971). Sweigart and Gross (1974) have
shown that this approximaiion yields equivalent HB ages.

The number of parameters necessary to describe a ZAHB
model--core mass M. in addition to total mass M, and composi-
tion--prohibited the computation of a full grid of models.

_Using the four HB models continued from the GB, identical

AbA Dafaiig vaOt S oty

ZAHB and evolved HB mcdels were computed with G # G, to dis-

cern the effects of G on the HB. An enormous set of HB models

from Sweigart and Gross (1975) is used to determine the HB
variations with core mass and total mass.

Considering the observable quantities--luminosity and
color--these relatively high-mass, metal-rich stars do not
describe a horizontal branch in the color-magnitude diagram;
but rather, they fall in a clump immediately to the blue of
the GB about Moo ® 0oM5. As measured by the difference in
effective temperature from the GB of the same stellar mass,
the color of these stars varies little with either G, Mc’ ot
Mx for M. < 0.5-M;. The luminosity of the HB model is com-
posed of both hydrogen LH and helium Lﬁe sources which

'strongly depend on G and M..
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L a G3.0i0.4 0.5+0.2

- -MCZ M, | (26)

6.5£0.5 4 4.620.5,; -0.06+0.01
Lye v G M. Ly (27)

The notation Ly and LHe apply only to the ZAHB luminosities

.0:0.3

unless otherwise noted. The helium luminosity becomes less
dependent on the core mass as the core exhausts.

' _ oy 4.6

Lye (ZAHB, YC—O.95) v Mc

Lye (Y=0.50) nM 34 (28)

_ 2.7
Lye (Yc=0.05) N M

-

The HB lifetimes typ from the models of Sweigart and

Gross (1975) are found to obey the empirical relation,

-0.65%0.05,_-0.1520.05 (29)

THB "V lhe
Since typ is proportional directly to the amount cof core
exhausted and inversely to the helium luminesity, one can

conclude that the exhausted region is dependent upon M.

(otherwise tyupg v Lﬁé). This region, estimated from either
the convective core mass MCC or the extent of the semi-

convective zone M., also varies like Ly, with evolutionary

stage.

1.3+0.1
M. (ZAHB) ~ M_ (30)

Mcc (max) ~ M 1-0%0.1 (31)

Mg (max) ~ M_0-55%0.05 (32)
For my models which were calculated with various values of G,
the size of the convective core was not influenced by G.

Thus, I shall assume as I have done on the main sequence that
the amount of material burned on the HB 1is independent of G.

For an individual star which has evolved from the GB,

the net effect of G on the HB is surprisingly small. Recalling
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the effect of G upon the core mass at the helium flash (equa-
tion 19), the resulting HB luminosity is almost independent
of G.

Ly ~ g0-0+0.6 (33)

Lye ™ g-0.4£0.9 | (34)
As mentioned before, the effective temperature as measured
relative to the GB of these HB models is not significantly
changed by G. If the amount of helium consumed on the HB is
independent of G as is thé convective core, then the HB life-
times can be determined by (i) finding the dependence of Typ
on Mc and (ii) dividing by the G dependence of the helium

burning. The effect of G on the HB lifetimes is similar to

~that on the GB lifetimes.

Ty v 6TFFL : (35)

The adopted HB evolutionary tracks for the STD and BDI
models exhibit G-variations only so far as my variable-G
calculations extend. The HB track up to helium core-exhaus-
tion for the 1.0 My STD model is listed in table 5. The HB
tracks for the other models use the 1.0 My track which is
rescaled uniformly in (i) time via equation (29), (ii) lumi-
nosity via equations (26) and (27) and (iii) effective temper-
ature relative to the particular model's giant branch. Since
I did not calculate any models beyond helium core-exhaustion,
the continuation of the HB--the asymptotic giant branch--is
modelled upon Sweigart's (1975) 1.5 Mg model with composition
¥Y,z2) = (0.30,0.02). The extrapolatioﬁ of the track from

'log(L/Lg) = 4.1 to 4.4 is based upon the (L, MC)-relation
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derived from Sweigart's 1.5 My and 3.5 My model sequences.
L/Ly = 55500+ (M./Mg - 0.474) (36)

This asymptotic GB track, which is given in table 6, is

attached onto the end of the HB track. It is not modified

for differences in G or stellar mass because of insufficient

data.

§6. The Detection of G # G, through Stars

When comparing stars of the same mass at equivalent
evolutionary phases, the changes induced by G seem quite sub-
stantial. This effect is most apparent in the luminosity
where L ~ G6'7 on the main sequence, L 7 G7'10 on the giant
branch, and L ~ G3-7 on the horizontal branch. The effec-
tive temperature of the models is also affected by G, but

0.5-1.5 Unfortunately, when view-

not as strongly, Toee Vv G
ing the main sequence or giant branch of a cluster of stars,
these differences all but disappear. With a larger G the
main sequence shifts parallel to itself upwards in luminosity
and towards the blue so that it appears as a slightly more
massive main sequence. Although the luminosity of the giant
branch is increased with G, the core mass at the helium flash
is reduced. Thus, the luminosity at the tip of the giant
branch is barely changed. The horizontal branch also shows

a shift to the blue and an increase in luminosity with G.

The luminosity increase is nullified by the reduced helium
core mass, and the color relative to the giant branch with

the same value of G remains unchanged.
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Although these changes in luminosity with G will be

difficult to observe in a cluster of stars, they do induce

a substantial change in the time scales of stellar evolution
which may be detectable. The main sequence lifetime of a
star is reduced by the increése in luminosity. Relative to
a star of the same mass, the high-G star has a much shorter
1 lifetime, Tt ~ G'6'6; and relative to the higher mass star
which it is imitating on the main sequence, it still has a

reduced lifetime, T ~ ¢ %*1.  This reduction in the main

sequence lifetime carries over to the giant branch and the
horizontal branch lifetimes which exhibit similar G-dependences.
All of these effects combine to make the detection of a
. value of G # G, into a most difficult task. Suppose we are
able to observe a detailed color-magnitude diagram of an old
cluster of solar-type stars which--unknown to us--has a
higher value of G > G,. Unable to determine the actual mass
at the turn-off, we will deduce a larger turn-off mass from
the higher luminosity. The appearance of the main sequence
will be similar to the standard clusters. Likewise, the
giant branch and horizontal branch will appear normal. Even
the relative number distribution of stars will be the same
as in standard clusters since the apparent ages scale.as
TN G.2 for all phases of evolution. Thus, in order to dis-
cern the effects caused by a variable G, we must have a set

of absolute calibrations of mass, composition and luminosity.




TABLE 1. THE EXPONENTIAL VARIATION

OF STELLAR QUANTITIES

with M:

models homology

with G:

models homology

4.6-4.8 4.5-4.9
0.7  0.7-0.8
0.7-0.9 0.7-1.3

6.0-6.9 6.3-7.0
1.1-1.4 1.1-1.4
1.8-2.2 1.6-2.5




TABLE 2. G-EFFECTS ON THE GIANT BRANCH
AT A FIXED CORE MASS

Quantity Variation
Total_ ] 10 ,
Luminosity L~vgG > L~ G/ %
; Neﬁgiizg L, ~ glé=l
IS g
; Ce%:;;irature T v G2-020.5
Ceg:;:ity o g3-5¢0.5

b * Decreases smoothly up to core flash

i
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TABLE 3. GIANT BRANCH MODELS AT HELIUM CORE FLASH
L
M/M9 Age (Gyr) loglgff log fe M./Mg log G/G, Xgpv.
1.0 STD 12.832 3.4594 3.365 0.47394 0.0 0.7073
1.2 STD 6.458 3 4709 3.363 0.47325 0.0 0.7078
0.9 BDI 15.612 3.4538 3.370 0.47755 -0.00139 0.7096
1.1 BDI 6.221 3.4661i 3.360 0.45847 +0.00945 0.7086




TABLE 4. THE GIANT BRANCH IN THE INTERVAL
LOG(L/LQ) = 2.0 » 3.0

50

Model Mcore/Me At(Myr) 6&(logAt) 1log G/G,
1.0/1.2 Me STD 0.289»0.403 27.77 0.0 0.0

0.9 My BDI 0.290;0.405 27.99 +0.0034 -0.0014

1.1 Mg BDI 0.280-+0.391 27.01 -0.0122 +0.0095




TABLE 5. 1.0 Mg HORIZONTAL BRANCH TRACK

Mes Yorys Zepy) = (0-474, 0.27, 0.02)

ZAHB: (log LH/LG’ log LHe/Le) = (1.53, 1.13)

Age (MyrT) log L/Ly log Toeg Alog T pg*

0.0 1.680 3.6140 +0.0182
16.0 1.675 3.6148 0.0187
32.0 1.675 -3.6156 0.0195
48.0 1.675 3.6164 0.0203
64.0 1.680 3.6172 0.0214
72.0 1.690 3.6163 0.0211
80.0 1.700 3.6153 0.0208
85.0 1.720 3.6135 0.0202
90.0 1.75S 3.6102 0.0193
92.5 1.785 3.6074 0.0184
95.0 1.830 3.6034 0.0173
97.0 1.910 3.5963 0.0154
99.0 1.820 3.6043 0.0175
100.0 1.870 3.5999 0.0163
101.0 2.010 3.5873 0.0136
101.9 2.489 3.5461 0.0088

* Alog Teff = (log Teff)HB - (log Teff)GB

at the same luminosity.




TABLE 6. ASYMPTOTIC GIANT BRANCH

Age (Myr) log L/Lg 8log Togg
0.000 2.49 =0.0000
2.335 2.35 +0.0124
6.433 2.50 -0.0010

7.490 2.60 -0.0098
8.248 2.70 -0.0190
8.814 2.80 -0.0282
9.230 2.90 -0.0376
9.498 3.00 -0.0469
9.702 3.10 -0.0567
9.877 3.20  -0.0670

10.060 3.30 -0.0769
10.255 3.40 -0.0867
10.469 3.50 -0.0964
10.698 3.60 -0.1059
10.901 3.70 -0.1147
11.065 3.80 -0.1233
11.316 3.90 -0.1313
11.614 4.00 -0.1359
11.939 4.10 -0.1402
12.263 4.20 -0.1419
12.587 4.30 -0.1427
12.912 4.40 -0.1435
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Fig.1.---ZAMS log L vs.log M. The mass-luminosity relation-
ship for 5 different series of ZAMS is shown for two
metallicities: (Y,Z) = (0.25,0.02) and (Y,Z) = (0.25,0.01).
Each line is labelled with the value of 1log(G/G,).
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Fig.2.---ZAMS log L vs. log T gr. The zero-age main sequence

for composition (Y,Z) = (0.25,0.02) is shown for the

mass range 0.5-1.2 Mg. £Each ZAMS is labelled with the
value of 1og(G/Gy)-
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tot

S A e i ]

Fig.3.---Fractional luminosity due to PPZ, PP3 and CNO energy
cycles as a function of the stellar mass. The same

three ZAMS are used and labelled as in Fig. 2.
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Fig.4.---Central density and temperature as a function of
stellar mass. The same three ZAMS are used and labelled

as in Fig. 2.
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G

0.0 0.5

Fig.5.---ZAMS energy generation ¢ throughout the interior of
the star. The value of log € as a function of the inte-
rior mass is plotted for the 1.0 and 1.2 My STD stars

(log G/Go = 0.0) and for the 1.0 Mg BDI star (log G/Gy
= +0.047).
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Fig.6.---The (log L, log Teff)-diagram for the STD tracks.

The stellar mass range is 0.5-1.2 Mg in intervals of 0.1

Mg, and the composition is (Y,Z) = (0.25,0.302). The

stars are evolved with a constant G = G,.
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Fig.7.---The (log L, log Teff)—diagram for the BDI tracks.
The stellar mass range is 0.5-1.1 Mg in intervals of 0.1
Mg, and the composition is (Y,Z) = (0.25,0.02). The
stars are evolved from a redshift of z = 5 in a Brans-

Dicke universe with w = 6, H, = 55 km/s/Mpc and Q@ = 0.20.
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Fig.8.---Increase in log L as a function of log G/G,. The
difference in luminosity is calculated by comparing the
BDI and STD models at the equivalent evolutionary phase
from the ZAMS to the base of the giant branch. The large
dots represent models with X. > 0.20; the open circles,

X. < 0.01; the small dots, intermediate values. The solid

lines depict the hypothetical relationships L'\:G6‘6 & L'bG4‘0
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Fig.9.---The (log L, log Teff)-diagram of the giant branches.
The giant branches of the 1.0 § 1.2 Mg STD models and
the 0.9 & 1.1 Mg BDI models are shown. The thickened
line on each giant branch is where the luminosity dips as
the hydrogen shell meets the composition discontinuity in
the envelope. A helium core flash occurs at the top of

each giant branch.
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-0.7 =0.6 -0.5 -0.4

Fig.10.---The (luminosity, core mass)-relationship for the

four giant branches of Fig. 9.
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Fig.11.---Giant branch luminosity function. N(L) is the ex-
pected number of giant stars per unit interval in log L.
The scale of N(L) is arbitrary. The peak about log L/Lg

= 1.5 is caused by the luminosity dip described in Fig. 9.

The solid 1line is calculated from the times of the actual

1.2 Mg giant branch track, and the X's represent the

theoretical form N(L) ~ L7 0-7,



CHAPTER IV. GLOBULAR CLUSTERS AND DECREASING G
§1. The Limitations of Globular Clusters

The globular clusters may show the greatest effect of a
decreasing G since they are among the oldest steilar popula-
tion in our galaxy. They represent a static population in

that one cannot view their evolution (i.e., at large redshifts).

At the present epoch, however, one can observe a detailed HR
diagram with a numerically significant distribution of stars
which provides luminosity functions and details of the main
sequence turn-off.

The giant branch and the horizontal branch will not show
effects from a higher G in the past since all of these stars
have evolved from the main sequence  at a comparatively recent
epoch where G * G,. Once a star has reached the giant branch
with a degenerate helium core and a uniform hydrogen envelope,
any previous history of a larger G has disappeared. The vari-
ations observed in the horizontal branch are more complex and
cannot be due simply to a larger G in the past (e.g., varying
composition, rotation, binaries, mass loss).

The main sequence turn-off and the sub-giant branch may
show the effects of a decreasing G. The turn-off and the sub-
giant regions are affected by the manner of hydrogen-core ex-
haustion which may in turn be influenced by the integrated

effect of a larger G in the past.
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§2. The Evolutionary Tracks

In order to examine the main sequence turn-off and the
sub-giant branch, I have computed a series of tracks from the
zero-age main sequence to the base of the giant branch. The
. tracks cover the mass range 0.7-0.9 Mg for the metal-poor
composition (Y,Z) =(0.25,0.0001). The stellar evolution code
is described in Appendix A and uses the energy generation
rates of Fowler, Caughlan and Zimmerman (1975) and the opaci-
ties of Cox and Stewart (1970).

The STD tracks, computed with G = G,, are shown in figure
1, and the key evolutionary points are listed in table 1.

The BDI tracks are computed for a Brans-Dicke universe with
H, = 55 km/s/Mpc, @ = 0.20, w = 6 and a redshift birthtime
of Zyjrtp = 5, which gives a birthtime of thirth - 1.521 Gyr
and a universe age of t, = 15.16 Gyr (see Chapter II). The
variation of G is computed from

log(G/G,) = 0.0271508-s + 0.0201262-s2,
where s = log(t,/t). These variable-G tracks are shown in
figure 2 and listed in table 2. For the BDI tracks the
decrease in luminosity due to a decreasing G is overcome by

the evolution-induced increase in luminosity which occurs

about xcenter =~ 0.5.

§3. The Isochrones

Synthesized globular clusters from the STD and BDI tracks

are computed for universe models with Hy; = 55 km/s/Mpc and



Q@ = 0.20 (and with ¢ = 6 for the BDI model). The clusters

are assumed to have formed at a redshift of Zuirth = S which
gives present cluster ages of 13.5 Gyr (STD) and 13.6 Gyr
(BDI).

For these hypothetical clusters I have used the iso-

chrone method described in Appendix B. I have assumed a

constant initial mass function which gives a uniform distri-

bution of stars in each mass interval. This assumption is
valid in the region of interest for a large range o7 uon-
constant--but continuous--initial mass functions because all
the stars from the turn-off to the base of the giant branch
have approximately the same mass. The isochrones for the
present-day STD and BDI models are shown in figures 3 and 4,
respectively. The thickness of the line from the turn-off
to the giant branch is proportional to the expected number
of stars in that region. (The thickness will depend, of
course, on the plotting scale.) There appears no obvious
difference in the distribution of stars across the sub-giant
branch except that the BDI cluster looks older than the STD
cluster. |

A more detailed examination of these clusters in the sub-
giant region can be made with the luminosity and color func-
tions which are calculated by the isochrone program. The
luminosity function--the number of stars at a given luminosity
L per unit interval in log L--is shown for a range of ages
for both the STD and BDI models in figures 5 and 6, respec-

tively. The color function--the number of stars at a given
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effective temperature per unit interval in log Tg¢g--is shown
for the same range of ages for both models in figure 7 and 8.
Considering both the luminosity and color functions, there is
little difference between the STD and BDi models which cannot
be ascribed to a difference in apparent age. For examplé,

the present-day BDI model at 13.6 Gyr looks like the STD
model at an age of 16.8 Gyr.

§4. The Effects of a Varying G on Stars

While the isochrones demonstrate the difference in appar-
ent age between the STD and BDI models, an examination of the

stellar models can yield more detailed information. I shall

- isolate those effects of a varying G which are independent of

the cosmological model.

Initially, it was postulated that the core exhaustion of
a étar might be affected by a higher value of G in its past
history. One can examine the core exhaustion by looking at
the energy generation rate e throughout the interior of the
star since the hydrogen exhaustion is proportional to €.
The zero-age main sequence values of e for the 0.8 Mg BDI
model and for the 0.8 and 0.9 Mg STD models are plotted in
figure 9 as a function of the interior mass. The increase in
G for the BDI model (log G/G, = +0.0472) does not make the
0.8 Mg model behave like a higher mass star, but rather just
scales up € by a constant factor throughout the star. Thus,

the manner of core exhaustion will not be affected, but the



69

time scales up to the exhaustion of the hydrogen core will
decrease as G--and hence e--increases.

The density of stars observed on the sub-giant branch of
a globular cluster is determined by the time interval which
a star takes to cross from the turn-off to the giant branch.
By defining the sub-giant crossing time as

tgg = t(M. = 0.200) - t(X, = 0.0002),

a comparison can be made with the data in tables 1 and 2.
The 0.8 My BDI model has experienced a larger G in the past
but crosses the sub-giant branch at approximately the present

epoch (G=Gy) . The times for the two 0.8 MG models,

1.179 Gyr (BDI)

t
SG 1.182 Gyr (STD) ,

are equal to within the ertor caused by the finite time step
between models which is At = 0.04 Gyr at core exhaustion.
Thus, with tﬁe exception of the difference in ‘apparent
age; the region about the turn-off and the sub-giant branch
of a globular cluster which is observed at the present epoch
will be independent of the previous history of G. These
results may not be applicable to larger mass, metal-rich stars
where the CNO-PP énergy generation baiance may be changed by
a larger G, causing the appearance of a large convective core

and thus altering the hydrogen core exhaustion.

A varying G may affect the luminosity and effective tem-
perature of stars in globular clusters to an extent which may
be observable at the present time. The luminosity of the

stellar models increases with G as is shown in figure 10
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where Alog L is plotted against 1qg(G/GQ). The value of
Alog L is the increase/decrease in luminosity of a variable-
G stellar model as compared with the standard model of the
same mass at the equivalent evolutionary phase. The core

hydrogen burning models follow L ~ G6°6. The later phases

VRIEAIC TP

of evolution (XC < 0.01) have no well defined relationship |
but are less steeply dependent on G (L ~ G4). Previous high-
G values do not affect subsequent evolution since the (Alog L,
log G/G,)-relation passes through the origin. The effective

temperature is not strongly affected by G which can be seen

by examining tables 1 and 2: Tegpg v Gl. As G approaches G,,

3 any difference in Tegs disappears. Thus, at the present epoch

- (G=G,) these observable quantities (L, Teff) become indistin-

guishable from the standard values.
§5. The Turn-off Mass

The only detectable difference between the STD and BDI
models of globular clusters is the apparent age, or rather,
the stellar mass at the main sequence turn-off. The higher G
of the BDI models speeds up stellar evolution and reduces
the turn-off mass. Since the increase in luminosity with G
is uniform throughout the star, the hydrogen fuel burns out
faster and the star ages more quickly. The evolution time
scale:- of an individual star varies inversely with this
increase in luminosity. Thus, for variable-G cosmologies
one can define an evolution time T which includes the inte-

ev
grated effect of a varying G,
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o THE .
To, (1) = J birth (G/Gq)%-dt,
birth
where L ~ G%.
Using the luminosity dependehce L~ G6‘6 determined in

8§84, the evolution times and hence, the turn-off masses for

the BDI cosmological model can be predicted and compared with
the stellar models. In the calculation of TeV(T) for the BDI
model, the integration. is carried into the future (G<G,) until
Toy 25 Gyr, which is the turn-oif age for the 0.7 Mg STD
model. The STD models were used to determine the (log T, log
Mt_o)-relationship,

log(Mt_o/Mg) = 0.220 - 0.270-10og T(Gyr).
The Tgy(t)-Trelation for the BDI case was then applied to pre-
dict the (log T, log Mt_o(BDI))-relationship. The results
are shown in figure 11.

The agreement of the BDI stellar models with fhe predic-
tions is quite good but gives a better fit with L ~ G7‘0.
This difference is induced by the method of evolving the star
whereby the energy generation rates of the old, converged
model are used to advance the composition of the model. For
the case of a decreasing G, the new model which has a lower
G will have lower burning rates, and the true time step be-
tween models will have been underestimated. The effect on
the overall age of the models will be small as long as the
chosen time steps allow only small decrements in G. For the
calculation of the turn-off masses I shall adopt the true

luminosity proportionality L ~ G6‘6, which will agree with



72

the ages of the models in the limit of infinitely small time
steps.

The present examination of the turn-off masses will be
extended to cover a full range of Brans-Dicke cosmoloéical
models. For the chosen composition (Y,Z) = (0.25,0.0001),
the turn-off mass at the present epoch can be calculated for
any variable-G cosmology in which Tev(T) is known. As is
true for the reél age 1, the evolution time 71, in a Brans-
Dicke cosmology scales inversely with the Hubble constant,
Tey Vv H°°1. This evolution time as a function of both the
Brans-Dicke coupling constant y and the fractional closure
density @ is shown in figure 12, where the redshift at stellar
formation is fixed Zyirth = ° and Hy = 55 km/s/Mpc. For the

region 3 < w < » and 0.028 < @ < 2.0, I find that log "

Tev
1/(1+w) with the slope becoming steeper for larger Q. In the

general relativistic limit 1/(1+w) - 0, Tey T since G = G,;
and in the low density limit @ » 0, 7, = T = Ho'l. For

w < 6, Tey 1NCTreases as @ increases since the increase in G
more than compensates for the decrease in real age. A most
interesting feature occurs in the cross-over region aboﬁt

w = 12 where the value of Tey 15 Gyr is almost independent
of Q. Table 3 lists the present values of the turn-off mass
for this range of (w, Q) with Hy = 55 km/s/Mpc, Zhirth - 5
and composition (Y,Z) = (0.25,0.0001). As a second example,
by fixing w = 6 and H, = 55 km/s/Mpc, the variation of Tey
with Zpirth is shown in figure 13 for different values of Q.

Table 4 gives the present-epoch turn-off masses for this case
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and for the composition {(Y,Z2) = {§.25,0.0001). For ail of
the densities considered, the value of the turn-off mass is
extremely sensitive to the choice of Zpirth 1f zpi.¢p < 4-
Thus, in all the Brans-Dicke cases, including the special
case of generél relativity, the turn-off mass of the globﬁlar
clusters will be strongly dependent upon the redshift at
stellar formation. Assuming that Zyirth Can be determined,
the turn-off mass for low-density universes (2<0.1) will
depend mainly on the Hubble constant. This condition also
holds in the unusual case of w = 12 where Tey = 15+ (55/H,) Gyr
for Zhirth - 5. For universes with approximately the closure

density (Q=1), the turn-off mass will be a function of all of

- the cosmological parameters: H,, £ and w.
§6. Conclusions

An attempt to discern the difference between the general
theory of relativity and the Brans-Dicke theory is made by
comparing the evolution bf a globular cluster of constant G = G,
with that of a specific variable-G Brans-Dicke model. 1In
making observations of individual stars in a globular cluster
one is limited to nearby clusters and hence, to the preseht
time where G = G,. The only difference which is found between
the general relativity and the Brans-Dicke models at the pre-
sent epoch is that the Brans-Dicke cluster looks older. This
difference in the apparent age, or rather, in the stellar
mass at the main sequence turn-off, is due to the higher value

of G in the past history of the Brans-Dicke models and is a
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function of the parameters (H,, Q, zbirth’ w) of the cosmo-

logical model.

In theory the turn-oir mass can be determined with a
knowledge of the absolute bolometric magnitude, the effective
temperature and the surface gravity at the turn-off. With
measurements of these quantities, a knowledge of the stellar
composition, and a belief in the accuracy of the stellar
opacities, the evolution time scale can be computed from the
turn-off mass. Supposing that a trustworthy evolutionary
age for the globular clusters can be thus derived, there still
remains the determination of the parameters of the cosmologi-
cal model.

Assuming that the Hubble constant and the density of the
universe are observationally fixed, ‘the evolutionary age is
still very sensitive to the redshift at stellar formation in
many cases. Allowing the value of Zhirth to be determined
somehow, the evolutionary age can be used at last to calculate
the Brans-Dicke coupling constant w. However, for low-density
universes the effects of a Brans-Dicke theory can barely be
detected for even w < 3. Although it is possible to test
Brans-Dicke theory with globular clusters, it is improbable

that such tests will be decisive.



TABLE 1. STD MODELS (Y,Z) = (0.25,0.0001)
Mass Point Age(Gyr) log Togge log L/Le
0.9 My ZAMS 0.0 3.7908 -0.074
X. = 0.480 3.055 3.8025 +0.038
= 0.208 5.693  3.8155 +0.167
= 0.0002 9.640 3.8505 +0.574
M. = 0.20  10.501 3.6981 +1.060
= 0.22 10.556  3.6900 +1.213
0.8 Mg ZAMS 0.0 3.7594  -0.309
X. = 0.481 4.554 3.7707 -0.198
= 0.210 8.728 3.7830 -0.059
= 0.0002 14.876° 3.8049  +0.401
Ms = 0.20 16.058  3.6954  +0.985
= 0.22 16.133  3.6890  +1.142
0.7 My ZAMS 0.0 3.7245 -0.582
X. = 0.482 7.233  3.7374 -0.472
= 0.212 14.356 3.7524  -0.319
= 0.0002 24.547 3.7723  +0.207
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TABLE 2. BDI MODELS (Y,Z) = (0.25,0.0001)

Mass Point Age(Gyr) log Teff log L/Lg log G/G,
0.9 M ZAMS 0.0 3.8576 +0.226 +0.0472
0.8 M ZAMS 0.0 3.8116 -0.003 +0.0472

X, = 0.480 2.859 3.7925 -0.063 +0.0205
= 0.209 6.076 3.7935 +0.004 +0.0100

= 0.0002 11.704 3.8073 +0.409 +0.0017
M. = 0.20 12.883 3.6953 +0.989  +0.0006
= 0.22 12.957 3.6889 +1.147  +0.0006
0.7 M ZAMS 0.0 3.7732  -0.270 +0.0472
X, = 0.481 4.871 3.7507 -0.382 +0.0130
= 0.211 11.071 3.7550 -0.303 +0.0023

= 0.0002 21.413 3.7694 +0.188 -0.0042
M_ = 0.20 23.171  3.6952 +0.860 -0.0048
= 0.22 23.281 3.6901 +1.023 -0.0049




TABLE 3. TURN-OFF MASSES FOR BRANS-DICKE COSMOLOGY

5

(Y,2) = (0.25,0.0001), Hy = 55 km/s/Mpc, z. .. =
Q =0.028 0.200 0.600 1.000 2.000

=3 0.791 0.744 0.689 0.662 0.633
6 0.796 ©.776* 0.757 0.750 0.746

12 0.800 0.797 0.799 0.804 0.821

= | 0.805 0.822+ 0.848 0.868 0.902

* BDI case
+ STD case
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TABLE 4. TURN-OFF MASSES FOR BRANS-DICKE COSMOLOGY

(Y,z) = (0.25,0.0001), H, = 55 km/s/Mpc, w = 6

Zpirth Q = 0.028 0.200 1.000 2.000

2 0.848 0.835 0.814 0.811
3 0.821 0.804 0.781 0.777
4 0.806 0.787 0.762 0.758
5 0.796 0.776* 0.750 0.746
6 0.790 0.768 0.741 0.737
8 0.781 0.758 0.730 0.726

10 0.776 0.751 0.722 0.718

* BDI case
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Fig.l.---Log L/Lg vs. log Tegs for STD modeis. The evolution
from the zero-age main sequence (box) to the base of the
giant branch is shown for 0.7, 0.8 and 0.9 Mg models

with composition (Y,Z) = (0.25,0.0001) and G = G, -
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Fig.2.---Log L/Lg vs. log Tegg for BDI models. The evolution
from the ZAMS (box) to the base of the GB is shown for
0.7 and 0.8 Mg models with composition (Y,Z) = (0.25,0.0001).
The BDI models assume a Brans-Dicke cosmology with w = 6,

Hy = 55 km/s/Mpc, @ = 0.20 and zy; 4 = S-
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Fig.3.---Iscchrone of STD cluster. The present appearance

of a cluster of composition (Y,Z) = (0.25,0.0001) is
shown in the (log L, log T_g¢)-diagram. The cluster is
assumed to have formed at redshift 2z, ;.4 = 5 in a
general relativistic universe with H, = 55 km/s/Mpc and
€ = 0.20 which corresponds to an age of 13.5 Gyr. The
thickness of the isochrone above the turn-off is pro-
portional to the expected number density of stars for

a constant initial mass function.
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Fig.4.---Isochrone of BDI cluster. This figure is the same
as Fig. 3 except that a Brans-Dicke cosmology with w = 6

is assumed which corresponds to an age of 13.6 Gyr.
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Fig.5.---Luminosity functions for STD metal-poor cluster.
The expected numbcr of stars per unit interval in log L
(N(L) has an arbitrary scale) is plotted as a function
of log(L/Lg) for a constant initial mass function. The
ages in Gyr of the hypothetical clusters are given in
each box and the arrows denote the luminosity at the

maximum log Togg-
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Fig.6.---Luminosity functions for BDI metal-poor clusters.

This figure is the same as Fig. 5 but uses the BDI

models.
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Fig.7.---Color functions for STD metal-poor clusters. The
expected number of stars acréss the sub-giant branch
(from the turn-off to the base of the giant branch) per
unit interval in log T g is plotted against log Tegg-
The scale of N(Tog¢) is arbitrary. The ages in Gyr of
the cluster is given in each box and the point of maxi-

mum T ¢g is denoted by an arrow. The initial mass func-

tion is assumed to be constant.
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Fig.8.---Color functions for BDI metal-poor clusters. This

figure is the same as Fig. 7 but uses the BDI models.
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0.0 M/Mg 0.5

Fig.9.---Log € vs. M/Me. The log of the energy generation
rate ¢ (erg/gm/s) throughout the ZAMS model is plotted
as a function of the interior mass. Two STD models
(0.8 and 0.9 Me) and one BDI model (0.8 Me) of composi-
tion (Y,Z) = (0.25,0.0001) are shown.
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0.0 AlogG +0.05

Fig.10.---Alog L vs. Alog G. The change in log L is plotted
against 1log(G/G,) for models of composition (Y,Z) =
(0.25,0.0001). The value of Alog L is determined by
comparing the BDI models with the STD models which are
at an equivalent evolutionary phase. The dots represent
models with XC > 0.10; the_circled dots, XC < 0.01.

For comparison, lines showing the relationships L n G7

and L ~ G4 are drawn and so labelled.
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-.15 -.05

Fig.11l.---Log t(Gyr) vs. log(M/Mg) at the turn-off for (Y,Z)
= (0.25,0.0001) models. The.turn-off point is defined
as X. = 0.0002 and corresponds roughly to the maximum
Tegg- The STD age-mass relationship is so labelled.

The STD models are plotted as circles and the BDI models
as X's. The line labelled BDI is the relationship pre-
dicted from the STD values and from the estimated BDI

evolution time defined as TBD = J (G/G°)6‘6 dt.
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0.0 | 0.2

Fig.lZ.--—Ldg Tev(Gyr) vs. 1/(1+w). The evolution time, as
defined by T__ = j;;o (6/6)%°% dt, is shown for differ-
ent densities Q and different Brans-Dicke coupling
parameters w for zy = 5. The values of Toy at 1/(1+w) = 0
are the general relativistic look-back times to z = 5.
These calculations are for H, = 55 km/s/Mpc, but 1

scales as Hu‘l.

ev
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Fig.13.---Log T,,(Gyr) vs. redshift z. The variation of evo-
lution time (see Fig. 12) from a given z to the present
time is shown for different density Q universes. The
assumed Brans-Dicke cosmology has w = 6 and H, = 55

km/s/Mpc. The time Tey scales as Hn-l.



CHAPTEIR V. GALAXY SYNTHESIS AND EVOLUTION
§1. Parameters of the Galactic Models

In this chapter the evolution of galactic magnitudes and
colors is examined. Systematic evolution of galactic magni-
tudes is important in determining the cosmological world
model, notably the deceleration parameter q,, because galaxies
are used as standard candles for the cosmic distance scale.
The evolution of galactic colors is directly observable as
a function of redshift, independent of absolute magnitude,
and can be used to test the galactic models. I shall con-
sider only single generation models, galaxies in which all
star formation occurred simultaneously at some early epoch
in the history of the universe. This approximation seems
valid for giant elliptical galaxies (Larson 1974) and has
~been applied to such models by other authors (Tinsley 1972a,
Rose and Tinsley 1974).

The galactic models are synthesized from the STD and
BDI stellar tracks which are described in Chapter III. Thus
these models are restricted to one composition, (Y,Z) =
(0.25,0.02), and will have neither spatial gradients nor
variations in metallicity. The contribution of globular
clusters as a separate population to the integrated light of
the galactic models is ignored. These single-generation,
single-population galactic models are constructed like iso-
chrones which are described in Appendix B. The theoretical

quantities (log L, log Tegg) are converted into the observable
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broad-band UBVRIJK-ﬁagnitudes (Johnson 1966) through the
color-color and T cg-color calibrations described in Appendix
C. The'Teff-color relationship was calibrated so that the
ZAMS would reproduce the (My, B-V) main sequence in the solar
neighborhood and that the 1.2 Mg giant branch would coincide
with the (MV, B-V) and (My, R-I) giant branches for the old
disk population. In deriving the integrated magnitudes and
colors of the galactic models, I shall ignore any effects

of absorption or reddening within the galaxy. Also, I shall
not consider the U-colors since the presence of relatively
few, young, massive stars will greatly influence the inte-
grated U-magnitude.

In spite of all the simplifying assumptions which have
just been made, there still remain three free parameters in
describing these galactic models. First, the age T of the
galaxy must be specified. In cases where a specific cosmo-
logical model is chosen, a knowledge of the redshift z is
sufficient if a redshift at stellar formation is specified.

Second, a mass distribution of the stars in the galaxy,
the initial massvfunction (IMF), must be defined. I have
chosen a one-parameter exponential IMF of the form N(m) = m S
where N(m)+dm is the number of stars in the mass interval
(m, m+*dm). My parameter s will cover the range (0,4) and is
similar to Tinsley's (1972a) x = s-1. This range includes
the classic Salpeter (1955) mass spectrum s = 2.35 as well
as recent values for open clusters (s - 2.74, Taff 1974) and

for the young disk population (s = 0, Eggen 1974). Even if
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the mass spectrum in the solar neighborhood were well defined,
it would not necessarily apply to the initial burst of star
formation in a giant elliptical. I shall not be concerned
with the upper or lower mass 1imifs which normalize the IMF
since I am not interested in mass-to-light ratios which may
.be greatly influenced by non-luminous matter.

Ideally, the third and last parameter of the galactic

models should be determined from the theoretical models: L

max’

the maximum luminosity attained during the hydrogen- and
helium-shell burning on the asymptotic giant branch before
the envelope mass is lost. My own stellar evolution code is
unable to follow the evolution to this stage, and the present
research in this field (Wood 1974, Kutter and Sparks 1974,
Smith and Rose 1972) is limited to individual models with no

conclusive general results. Thus, I shall allow L, ., to vary

X
over the range log Lmax/Le = 3.60-4.40 as a free parameter
in the galaétic models. The (luminosity, core mass)-relation
derived from Sweigart's (1975) data is employed, and the
values are listed in table 1.

The isochrone program includes all stars from the tip
of the asymptotic giant branch down to a lower-main-sequence
mass of 0.5 Mg. The stellar masses below 0.5 My are excluded
because they are outside the range of my evolutionary tracks.
For a turn-off mass of approximately 1 Mg, the fraction which
these low-mass stars contribute to the main-sequence bolometric

luminosity can be estimated from L ~ M4'7 (see Chapter III)

L(M < 0.5 Mg)/L(main sequence) = 2875-7 (1)
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Thus, the omission of the low-mass stars will affect the

main-sequence fraction of the total luminosity by at most

30% in the worst case of s = 4.
§2. The Standard Galaxy

In this section I cshall comsider only standard (G = Gg)
galaxy models and their evolution as a function of age, inde-
pendent of the cosmological model. The models are comstruc-
ted from the STD evolutionary tracks (see Chapter III) and
cover the age range 1 = 6-16 Gyr. The corresponding asymptotic
giant branch masses range from 1.23 Mg to (.94 Mg.

First, I shall examine the questions of where most of
the stars are with regard to evolutionary status and from
what stars does most of the light come. In figure 1 the
relative number of stars N and the bolometric anrnd BVRIJK
~ luminosity contributions of the stars are plotted as a func-
tion of the bolometric luminosity for a standard model galaxy
at an age of 14 Gyr. The solid lines represent the extremely
steep IMF of s = 4; and the dotted lines, the flat IMF of
s = 0. The numbers in brackets represent the relative con-
tribution of both the main sequence and the part of the asymp-
totic giant branch which is more luminous than the giant
branch maximum. These numbers in figure 1 are for the cases

s=0/s=4 and refer to the case log L /Lﬂ = 4,40. The effects

max
of a reduced L ax can be estimated by truncating the graph.
With regard to numbers of stars, it is obvious that the

main sequence dominates for all ranges of IMF's and that the
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horizontal branch stars (also called clump giants, Faulkner
and Cannoﬁ 1973) represent a major giant constituent. With
regard to the bolometric luminosity, the importance of the
main sequence is reduced (16-28%); and the upper giant branch
and very luminous asymptotic giant branch stars become
.extremely important (35-41%). As one proceeds to longer wave-
lengths (V »K), the red, luminous stars of the giant branch
and the asymptotic giant branch become increasingly more
important.

The effects of varying L;,x upon the magnitudes and
colors of the galactic models are almost independent of the
IMF and the age, and they are given in table 2. The increase
in Lmax by 1.0 bolometric magnitude yields a negligible in-
crease in the B, V and R magnitudes~($0@03), but has a sub-
stantial effect on the redder colors. The behavior of the
models with regard to the IMF parameter s is much mére com-
plicated and exhibits a strong age interdependence. The
obvious--but trivial--effect of s upon the static models is
to increase the importance of the main sequence.

Knowledge of the time evolution ot tne absolute visual
magnitude MV of giant elliptical galaxies is necessary 1in
order to determine the cosmological deceleration parameter
q,- The value of q, is determined to first order in redshift
z by (Weinberg 1972, pp. 441-451)

my = Mv - 5+log H, + 5+<log 2z
+ 1.086+2z+{1 - (qo+0.92-H;l-aM /dt)}

+ constants + corrections. (2)
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The effect of galactic magnitude evolution is to produce a
difference 8q, between the true deceleration parameter q}rue
and the deceleration parameter qsbs which is observed by
examining the deviation from linearity of the (mV, log z)-

relation. This value of 8q, is related to the magnitude evo-

lution by

ngs - qgrue = -0.92-{My(2) - My(0)}/z

= 0.92-H; edMy/dt = 9.0-h™teaMy/dt(Gyr) ,  (3)
where h = H,/100 km/s/Mpc.

8q¢

For the standard model galaxies the magnitude evolution

was found to be (i) almost independent of Lhaxe (ii) partially
dependent upon the age in no simply definable manner, (ii1)
strongly dependent upon the IMF, and (iv) always decreasing
in luminosity with age for all IME's (0 s S 4).

dMV/dt(Gyr) = 0.130 - 0.020-s (12<1<16 Gyr)

(4)
0.195 - 0.035-s (6<t<8 GyT)

Thus, assuming a value of Hy, = 55 km/s/Mpc, the value of ngs
is greater than the true value by as little as 0.8 (s=4,
T~14 Gyr) and as much as 3.2 (s=0, t=7 Gyr) .

The integrated galactic colors as functions of the model
parameters are shown in tables 3 (B-V), 4 (V-R), 5 (V-I),
6 (V-J) and 7 (V-K). For all of these colors the evolution
is minimal except in the age range 6-8 Gyr. The integrated
(B-V) is almost independent of L., and evolves at a rate
which depends only on the value of (B-V) |

d(B-V)/dlogt = 0.24 + 1.6-{1.00-(B-V)} (0.90<B-V<1.00)

0.24 - 4.0-{(B-V)-1.00} (1.00<B-V<1.04)
(5)
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The later colors also evolve towards the red and tend to level
off for ages greater than 10 Gyr. For these old galaxies

the value of (V-R) 1s roughly constant with age and IMF,
varying solely with L;,y. As one progresses to (V-K), the
asymptotic values of the colors become more dependent upon
Lpax (see table 2) and increasingly more sensitive to the IMF
( d(V-K)/ds = -0703).

Assuming that the(color calibrations (Appendix C) are
accurate, I can compare the observed colors for giant ellip-
ticals which are listed in table 8 with those from my models
in tables 3-7. From Sandage's (1973) (B-V) color nothing can
be ascertained about Lj,,, but IMF-age limitations can be
derived: for v = 8, s £ 2; for 1 = 14, s 2 2. The observed

(V-R) places an upper limit on log L__ . /Ly X 4.40. Grasdalen's

max
(1975) (V-K) color puts a lower limit on log Lp,x/Lg 2z 4.00.

Frogel et al.'s (1975) value for (V-K) is out of the range

of acceptable L _, because of core mass limitations (log L

ma max

/Lg > 4.40 implies M > 0.95 Mg = M

max
et al.'s value cf (J-K) with Grasdalen's (V-K) gives a (v-J)

core ). Combining Frogel

which places only minor limitations on the model parameters:

if log Lmax/LG = 4.40, then s 2 2. The only reported evolu-
tion of galactic colors is for (B-V). For (B-V) = 0.98:0.03
the models' (B-V) evoluticn {(d(B-V)/dlogt = 0.26%0.06) falls
within the rather broad observational limits of Sandage (1973)
and Crane (1975).

The observed coiors do not adequately 1limit the model

parameters. If one further assumes an open universe with
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H, = 55 km/s/Mpc, then one can set bounds on the present age
of the universe, 12 < t,< 18 Gyr. Thus for giant ellipticals
formed early in the universe, some limits on the model para-
meters can be set: 10 < Tt < 16 Gyr, 4.00 £ log Lmax/Le 2 4.40,
and s 2 2. The magnitude evolution of the galaxies is then
non-negligible,

dMy/dt = 0.03-0709 Gyr'1,  (5>s22) (6)
éndtﬂm:corresponding effect on 8q, is quite large but still
not well defined,

6q, =1 £ 3% (7)
These values are similar to those obtained by Tinsley (1972a)
and re-enforce the importance of galactic evolution in the

determination of the cosmological model.
§3. Brans-Dicke Galaxy Evolution

In this section the evolution of standard (G = Gg) and
Brans-Dicke (Brans and Dicke 1961) model galaxies will be
examined for a specific cosmological model: H, = 55 km/s/Mpc,
Q = 0.20, zpyj,.¢p = S5, and the Brans-Dicke v = 6. With these
two cosmologies (STD and BDI, see Chapter II), the evolution
of magnitudes and colors is compared as a function of an
observable quantity, the redshift z. Isochrones in the (iog L,
log T gg)-diagram of the STD and BDI galaxies are shown in
figures 2 and 3 both for the present epoch (z=0) and for a
redshift z = 0.8. The only obvious difference between the

two models is the comparably older appearance of the BDI models

at both redshifts. This difference is due to the higher G
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values in the early history of the BDI model which cause a
substantially faster aging of the stars.

The backward evolution with redshift or the integrated
colors and magnitudes of the STD and BDI models is shown in

figure 4 for an IMF of s = 2 and log L

nax/Le = 4.20. The

effect of L . upon the magnitudes and colors of the BDI model
is the same as for the STD model and has been given in table
2. Upon examining figure 4, one notes that the evolution of
the BDI model runs parallel to that of the STD model with the
exception of Mj,x, the mass of the most highly evolved stars
on the asymptotic giant branch.

The bolometric magnitude of the BDI model does not
.decrease. (i.e., increase in luminosity) quite as rapidly as
the STD model. This is the opposite of what might be naively
expected since G is increasing with z and L ~ G’ for individual
main sequence stars. The effects of this increase in G upon
Mbol for a non-evolving BDI galaxy are shown with the My,
evolution in figure 4. The BDI model does not demonstrate
this additional increase in luminosity because
the evolution of the turn-off mass as indicated by M_ . is
proceeding at a slower rate as compared with the STD models.
The net result is that the BDI model looks slightly older and
redder but evolves at approximately the same rate as the STD
model when examined in the BVRIJK colors.

The dependence of the evolution of the colors and the
V-magnitude upon the model parameters,-including the effects

of BDI, has been determined by a crude factor analysis and is
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listed in table 9. The color evolution for all models is
always towards the blue but is small compared with the magni-
tude evolution. The BDI model evolves more rapidly towards
the blue, especially in the later colors (e.g., V-K). -It

does not brighten as quickly as the STD model unless the IMF
parameter s > 3.

The V-magnitude evolution is important in determining the dif-
ference between the observed deceleration parameter and the
true one. If dMy/dz depends on redshift, then the value of
8q, will also depend on the redshift at which ngs is evaluated.
Sample values of 8q, are given in table 1C for the STD model,
the BDI model, and a non-evolvipg BDI model with Ly ~ 7. As
expected from the V-magnitude evolution, the difference in

§q, between the BDI and STD models is in the opposite sense

to the difference expected from L n G7. This difference
disappears entirely for an s = 3 IMF.

Thus, the effect of a higher G in the past, as predicted
by Brans-Dicke theory, actually reduces the luminosity evolu-
tion with increased redshift (i.e., higher G). The evolution
towards the blue of the integrated galactic colors proceeds
slightly faster in the BDI model but is intrinsically small
for all models. There is very little net difference between
the STD and BDI models except for the greater apparent age of
the BDI model which is due to the lower value of the main

sequence turn-off mass.
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§4. Discussion

In this study of galaxy synthesis and evolution, my
galactic models are limited to a single generation of solar-
abundance stars from a complete set of self-consistent evo-
lutionary tracks. The transformation of the theoretical
effective temperatures into observable broad-band colors is
not based upon the T gg-color calibrations in the literature
but is designed to reproduce observed sequences of the disk
population with my own T_c.'s. While changes in metallicity
will certainiy influence the actual values of the integrated
galactic colors, they will be unlikely to change the evolution
pattern of the colors and magnitudes. The inclusion of a
"large number of metal-poor stars, especially on the horizontal
branch, would greatly increase the blue light from the models.
This proposition seems unlikely in view of the rapid metal
enrichment in the early phases of stellar formation which is
found by Larson (1974). The adopted power-law IMF applies
only to the stars with mass greater than 0.5 Mg. If the
ignored, low-mass stars exhibit a very steep IMF, then the
redder colors of the galaxy models will be affected. With
these limitations in mind, let me examine these models with
regard to the evolution of colors and magnitudes, the deter-
mination of the model parameters through observation, the
effect of a Brans-Dicke variable-G universe, and the similar
single-generation galactic medels of Tinsley (1972a, 1972b)

and Rose and Tinsley (1974).
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The evolution of the integrated galactic V-magnitude is
quite substantial for all of my models. As can be seen in
figure 1, the V-1light is independent of both the maximum
luminosity of the asymptotic giant branch and the lower main
sequence; and thus the V-magnitude evolution will depend
solely on the IMF about the turn-off (0.8-1.2 Mg). The V-
luminosity always decreases with age for an IMF parameter
0 <s < 4, but by extrapolating my results, this trend could
be reversed for an extremely steep IME of s > 6. Unlike
Tinsley (1972a) I do not find that (t-dMV/dt) is independent
of the age of the models (see equation 4). We both concur
that dMy/dt is jinear with respect to the power-law IMF para-
meter s. Our results agree exactly if 1 take the mean of my

values at an age of 10 Gyr,

(t-dMy/dt) 1o gop = 1.6 - 0.28-s (8)

1]

1.3 - 0.3°x (Rose and Tinsley 1974)
where x(Tinsley) = s - 1.

The evolution of My causes an erTor in the observational
determination of the deceleration parameter (,. The value of
this error 8q, (equation 3) depends on both dMV/dt and the
cosmological model. For the particular model in this study
(Hy = 55, & = 0.20), the observed deceleration parameter
should be reduced by 8q, = 1 = % for a reasonable range of
IMF's.

The evolution of the integrated galactic colors is quite

small when compared with the magnitude evolution (see table 9).

With the exception of (V-R), all of the colors evolve slowly
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to the red and approach a constant value as the galaxy ages
from 6 to 16 Gyr. The later colors, especially (V-K), tend
to evolve more rapidly in the younger galaxies. While Rose
and Tinsley (1974) claim that (V-R) always evolves to the red,
I find that (V-R) (i) has the slowest evolution of all the
'colors, (ii) is almost constant for ages greater than 12 Gyr,
and (iii) sometimes exhibits a small turnover towards the
blue for ages greater than 14 Gyr. This latter phenomenom
does not occur in the specific cosmological model which was
examined because the galactic ages in this model are less
than 13.5 Gyr.

The observations of nearby galaxies should be able to
restrict the range of the model parameters. Knowledge of the
IMF parameter s is crucial in determining the magnitude evo-
lution. Rose and Tinsley (1974) claim that s = 2 produces
galactic coleors which are too blue for ages less thén 11 Gyr
and that s = 4 models are too red at longer wavelengths. I
find that for s = 2 my models are within the observed range
of (B-V) for ages as young as 8 Gyr. My models for s = 4
are nct too red, but I have ignored stars below (6.5 Mg. How-
ever, from figure 1, these low-mass stars could not contribute
substantially to the integrated light for any colors earlier
than K or possibly J (1.25p). Even then, the IMF would have
to extend very steeply (s24) to stars well below 0.5 Mj.

Based upon age limitations (open universe with H,=50 km/s/Mpc)
and the observations given in table 8, I can only place weak

bounds on the value of s, 2 £ s < 5. The most recently
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observed value of s = 2.74 (Taff 1974) for open clusters pro-
duces acceptable galaxy models.

The other important model parameter is the maximum lumi-
nosity--or core mass--which is reached by the asymptotic
giant branch stars in the final stage of evolution which is
considered in this study. The value of L, dces not affect
(B-V) but has a successively larger effect on the later colors
(table 2). The limitations on L ., based upon my models and

the observations, 4.00 £ log L /Lg £ 4.40, correspond to

max
a core mass range of 0.65-0.93 Mg. This large range in Ly, x
is due to the large range of observed values in the late-type
colors such as (V-K). The results of Rose and Tinsley (1974)
indicate that core masses in excess of 0.7 Mg produce galaxy
models which are too red at a wavelength of 1.0u. My models
have acceptable J-colors (1.25u) for core masses up to 0.9 Mg,
. and I could find no I-color (0.9u) observations to test the
models.

Tighter restrictions on the parameters of the galactic
models could certainly be made with more accurate observations
of the mean colors of giant elliptical galaxies. This is
especially true in the red colors which are sensitive to the
value of L ... The IMF from the turn-off to the lower main
sequence could be more accurately fixed from observations of
luminosity sensitive lines from the V through K colors. The
contribution of the main sequence to the total luminosity in

a given wavelength region can be used with figure 1 to esti-

mate the IMF. While improvements in the model parameters
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can be derived in this manner, there comes a point at which
errors in the initial color calibrations become important.
The color calibration of the most luminous, very red stars

js difficult because of the relatively small number of such
stars which are observed. Their theoretical effective tem-
peratures are unreliable.since the radius--if such a quantity
can be defined--depends sensitively on the theory of convec-
tion. The assumption of a single generation of stars will
adequately define the present appearance of the galaxy, if
the stars were formed over a period of 1-2 Gyr in the early
universe. However, the assumption of uniform solar abundances
is certainly not exact, and variations in metallicity will
cause a range of turn-off masses (e.g., the metal-poor stars
about 1 My evolve faster than their solar-abundance counter-
parts) in addition to changing the color calibrations from
the main sequence tc the asymptotic giant branch. Thus, an
absolute determination of the model parameters from galaxy
synthesis would require more realistic galactic models with
correspondingly accurate color calibrations.

My approach to the problem of galaxy evolution in a
Brans-Dicke universe is to assume that the present values of
the expansion rate, the mean density, and the redshift at
galaxy formation are known. Then the evolution of a standard
Friedmann-cosmology galaxy 1s compared with that of a galaxy
which is evolved in the corresponding Brans-Dicke cosmological
model with w = 6. The Brans-Dicke galaxy undergoes a greater

effective evolution because of the higher values of G in its
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past history, and thus at the present epoch, it has a smaller
turn-off mass and appears slightly redder than the standard
galaxy (e.g., +0.035 in (B-V)). The color evolution of the
Brans-Dicke galaxy roughly parallels that of its standard
counterpart, but its V-magnitude evolution is slightly slower
for an IMF of 0 < s < 3.

These results are opposite to those of Tinsley's (1972b)
analytical model in which an L G’ contribution is added
onto the standard model's magnitude evolution. If one assumes
that both models are at the same evolutionary stage at the
present time, then this addition of L ~ G’ (not true for gilant
branch and helivwm-burning stars) may be valid. But, this
_assumption requires the two models to have evolved in differ-
ent universes (e.g., Hy(BD) < H,(standard)).

However, both Tinsley and I agree that the difference in
magnitude evolution between the Brans-Dicke and standard
models is undetectable at the present time. If one believes
in the approximate accuracy of the cosmological parameters
(H, = 50 km/s/Mpc, @ = 0.2, Zpjrth = 5), then one can probably
rule out a much stronger G dependence (e.g., Brans-Dicke with
w < 3) which would result in an excessively evolved galaxy.
Choosing between the Brans-Dicke model with w = 6 and the
standard model, based upon the redder appearance of the
former, places too great a burden on the accuracy of the T g¢-

color calibration and on the assumption of solar abundances.
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TABLE 1. CARBON/OXYGEN CORE MASSES

log L/Lg Mcore/Mg
3.6 0.575%*
3.8 0.598%*
4.0 0.654
4.2 0.760
4.4 0.926

* Not on linear portion:

L/Lg = 55500+ (M. - 0.474)



TABLE 2. INTEGRATED GALACTIC EFFECTS
OF INCREASING THE MAXIMUM LUMINOSITY

log Lmax/LG = 3.80 > 4.20
Quantity AQuantity

Mo -0.25%0.03
MV '0.01
B-V +0.005+0.001
V-R +0.024+0.003
V-1 +0.09+0.01
V-J +0.14+x0.01
V-K +0.20+0.01

110



TABLE 3. STANDARD GALAXY (B-V) COLORS

Age (Gyr)
IMF
6 8 10 12 14 16
=0 | 0.94 0.98 1.00 1.62 1.03 1.04
2 | 0,91 o0.96 0.98 1.00 1.01 1.02
4 | 0.89 0.94 0.97 0.99 1.01 1.02

Add + 0.015-(log L. /Lg - 4.00)
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TABLE 4. STANDARD GALAXY (V-R) COLORS
L Age (Gyr)
log 32X IMF
Lg
6 8 10 12 14 16
s =01 0.86 0.88 0.89 0.90 0.90 0.90
4.40 2| 0.83 0.8 0.88 0.89 0.89 0.90
4 | 0.81 0.84 0.8 0.88 0.89 0.89
s =01 0.8 0.8 0.8 0.8 0.87 0.87
4.00 2| 0.80 0.82 0.84 0.85 0.86 0.87
4| 0.78 0.81 0.84 0.85 0.8  0.87
s=010.80 0.82 0.8 0.85 0.8 0.86
3.60 21 0.78 0.8 0.83 0.84 0.8 0.85
4| 0.77 0.80 0.82 0.84 0.85 0.86
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TABLE 5. STANDARD GALAXY (V-I) COLORS
Age (Gyr)
log maX  yp
Lo

6 8 10 12 14 16
s =0 1.64 1.67 1.70 1.71 1.71 1.71
4.40 2 1.58 1.62 1.66 1.67 1.68 1.68
4 1.53 1.58 1.62 1.65 1.66 1.66
s =0 1.48 1.53 1.55 1.57 1.57 1.58
4.00 2 1.44 1.49 | 1.52 1.54 1.58 1.56
4 1.41 1.47 1.51 1.53 1.55 1.56
s =0 1.42 1.47 1.49 1.51 1.52 1.53
3.60 2 1.38 1.44 1.47 1.49 1.51 1.51
4 1.37 1.42 1.46 1.49 i1.51 1.52
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TABLE 6. STANDARD GALAXY (V-J) COLORS
Age (Gyr)
log Imax IMF
Lo

6 8 10 12 14 16
s = 2.20 2.24 2.27 2.29 2.29 2.28
4.40 2.12 2.18 2.22 2.24 2.25 2.24
2.05 2.12 2.17 2.2¢ 2.21 2.21
s = 1.98 2.03 2.06 2.08 2.09 2.09
4.00 1.92 1.98 2.02 2.05 2.06 2.06
1.88 1.95 2.00 2.03 2.05 2.06
s = 1.89 1.95 1.98 2.00 2.01 2.02
'3.60 1.84 1.90 1.95 1.97 1.99 2.00
1.81 1.88 1.93 1.96 1.99 2.00
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TABLE 7. STANDARD GALAXY (V-K) COLORS
L Age (Gyr)
log -B2X  IMF
Lg

6 8 10 12 14 16
s=013.11 3.16 3.20 3.21 3.21 3.20
4.40 2 | 3.01 3.08 3.12 3.15 3.15 3.14
4 | 2.90 2.99 3.05 3.08 3.10 3.10
s=01|2.80 2.8 2.90 2.92 2.93 2.93
4.00 2 | 2.72 2.79 2.84 2.87 2.89 2.89
4| 2.65 2.74 2.80 2.84 2.86 2.87
s=01|2.67 2.73 2.78 2.80 2.82 2.82
3.60 2| 2.60 2.68 2.73 2.76 2.78 2.79
4 | 2.55 2.64 2.70 2.74 2.77 2.78




TABLE 8. OBSERVED COLORS FOR

GIANT ELLIPTICAL GALAXIES

<B-V>
 <V-R>
<V-X>

<J-X>

Stz t

= 0.98%0.03
= 0.86x0.03
= 2.9-3.2

= 3.2-3.4

= 0.97

< 0.3

= 0.17£0.15

Sandage 1973

Sandage 1973

Grasdalen 1975
Frogel et al. 1975
Frogel et al. 1975

Sandage 1973

Crane 1975
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TABLE 9. MEAN COLOR EVOLUTION <3COLOR/3z>
STD MODEL OVER RANGE z = 0.0 » z = 0.1

WITH s = 0 AND log L . ,/Lg = 4.20
Color |Basic Additional Terms
Rate IMF 2223.5 12%.§max BDI
(B-V) |-0.09 -0.01-s -0.02 0.00 -0.01
(V-R) |-0.05 -0.01-s -0.01 -0.01 -0.01
(v-1) [-0.05 -0.02-s -0.04 -0.02 -0.03
(v-J) {-0.06 -0.02-s -0.05 -0.03 -0.04
(V-K) |-0.G5 -0.03-s -0.06  -0.04 -0.05
Vv |-2.16 | +0.34-s x0.837  o0.00 *0-23
~0.07-s

tMultiplicative factor
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TABLE 10. &q, BASED UPON EVOLUTION OF MV

Initial Mass Function

Model
s =0 1 2 3
STD 1.69+0.30* 1.40%6.27 1.12%0.23 0.85%0.20
BDI 1.52#0.25 1.30+0.23 1.08+0.20 0.86x0.17
BDI with L~G? 0.214:£0.012

(No Evolution)

* Values are 0.92+MMy/z for a range z = 0.0 »~ z = 0.4
+ refers to range z = 0.0 - z = 0.1
- refers to range z = 0.0 - z = 1.0
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Fig.la.---Distribution of light and numbers of stars as a func-

tion of luminosity for a standard model
14 Gyr and with 1°g(Lmax/L0) = 4.4. The
is arbitrary and represents the relative
for each interval of 0.2 in log L. N is

stars, BOL is the bolometric luminosity,

galaxy of age
vertical scale
contribution
the number of

and BVRIJK are

the broad-band luminosities. The solid line is for an

exponential IMF of s = 4; the dotted line, s = 0. The

luminosities of the main-sequence turn-off, { -+ Fig.1lb}
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Fig.1lb.---{continued} the zero-age horizontal branch (ZAHB),
and the tip of the giant branch are denoted. The num-
bers in parentheses refer to the (s=4/s=0) fraction of
the particular quantity which is due to the main sequence

(left side) or to the upper asymptotic giant branch

(right side).
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Fig.2.---Isochrone for STD model galaxy. The position in
the (log L, log T gg)-diagram of the stars which were
formed at a redshift of zyj,.¢tph = 5 in a universe with
Hy, = 55 km/s/Mpc and @ = 0.20. The solid line is for

the present epoch (z=0); the dashed line, for z = 0.8.
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'Fig.3.---Isochrone for BDI model galaxy. This figure is the
same as Fig. 2 except that the universe is Brans-Dicke

with 0w = 6.
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0 7 04 08 O 7 04 0.8

Fig.4.---Galactic evolution with redshift. The efolution of
maximum mass, Mpo1, My, and BVRIJK colors is shown as a
function of redshift for STD (solid lines) and BDI (dashed
lines) galaxies with s = 2 and 1og(Lmax/Lg) = 4.2. The
maximum mass refers to the most highly evolved stars on
on the asymptotic giant branch. The absolute scale of the
Mpo1 and My magnitudes is arbitrary but the relative dif-
ferences are correct. The magnitude evolution in the BDI
universe with only L ~ G’ (dotted 1line) is also shown.



CHAPTER VI. IS BRANS-DICKE OBSERVABLE?

In this thesis I have examined in detail the effects
of a Brans-Dicke universe upon the evolution of both indi-
vidual stars and the integrated galactic properties of a
. conglomerate of stars. The cosmological models assume
that the universe is matter-dominated with a zero cosmolo-
gical constant and, for the Brans-Dicke models, that ¢R?® - 0

as R+ 0. In Brans-Dicke the local gravitational coupling
coefficient G is a function of the redshift and, as such,

is independent of the Hubble constant H,. The function

G(z) increases more steeply with redshift as either the
fractional closure density Q increases or the Brans-Dicke
'coupling parameter w decreases. For very low density uni-
verses (@ < 0.02) with w = 6, the inerease in G up to a
redshift z = 10 is negligible. If the universe is not

very dense (Q < 1), the age—redshift relation for the Brans-
Dicke models is almost identical to that for the correspond-
ing Friedmann models of general relativity fheory.

In order to compute the stellar evolution tracks, a
specific Brans-Dicke cosmological model (BDI) was selected:
H, = 55km/s/Mpc, @ = 0.2, zpj,¢h = 5, w = 6. The resulting
variable-G stellar models were compared with models evolved
under a constant G, and the BDI galaxy models were compared
with galaxy models evolved wifh the corresponding Friedmann
cosmology (STD). Although the maximum value of G in the

BDI models may seem small (log G(z = 5)/G, = +0.047), it
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does yield an increase in the stellar luminosities of up
to one full magnitude.
From the BDI stellar models in the mass range

0.5 - 1.1My with composition (Y,z2) = (0.25, 0.02), the
following dependences upon G for the main sequence stars
‘were determined.

L(main sequence star) ° G6.3-7.0,m4.7

Teff(main sequence star) ~ gl.0-1.5
These relations can also be derived from homology arguments.
If one examines the main sequence as a whole instead of
following an individual star, then the main sequence which
is observed at a given luminosity has little G dependence
in either the effective temperature or the surface gravity.

TopeMS) ~ G*0.2

g(MS) ~ G*0.4
Sin;e the amount of hydrogen consumed on the main sequence
appears to be independent of G, the main sequence lifetime
of an individual star is reduced by

T(mzin sequence star) ~ G-6-6,
However, for G > G, the star is imitating a higher mass,
more luminous star which has a shorter lifetime. If the
amount of core burned out on the main sequence is propor-
tional to the stellar mass, then the main sequence lifetime
at a given luminosity is reduced by

T(MS) ~ G-2%1,

The individual stars on the giant branch are also

greatly affected by G if they are compared at equivalent
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core masses.

L(giant branch star) ~ g/-10

However, the value of the core mass at helium ignition is
reduced by an increase in G, and hence, the maximum iuminos-
ity of the giant branch is almost independent of G.

-121
L. (GB) ~ G

The shift in effective temperature of the giant branch as a

whole is also minor.

<0.2
T ¢c(GB) ~ G

The reduced core mass with increased G does cause a reduction

in the giant branch lifetimes.
T(GB) ~ ¢ 2%l
Likewise, the individual stars with helium-core burning

on the zero-age horizontal branch are greatly affected by G.

6.5 4.6
Mcore

3.0, 2.0, 0.5
LH(ZAHB stars) v G Mcore Mstar

Lye (ZAHB stars) ~ G

But, the reduced core mass from the giant branch almost can-
cels out the horizontal branch's dependence upon G. The
effective temperature of the horizontal branch with respect
to the giant branch is independent of G to the accuracy of
the models. In spite of the reduced core mass, the high-G
star still has a reduced horizontal-branch lifetime when

compared to the higher core-mass star which evolved from the

giant branch with a constant G = G
-2+1

o.
T(HB) ~ G

I am unable to derive the G-dependences of the post-horizontal-

branch phases since my evolution code cannot follow stars

beyond helium-core exhaustion.
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Consider now what effects one could possibly detect by
observing an old ciuster of solar-abundance stars which are
subject to a uniform but higher value of G. The main seque=nc
shifts upwards in luminosity and towards the blue, but this
merely looks like a younger cluster with more massive stars
at the main sequence turn-off. Unless one has an accurate
calibration of the turn-off mass and the composition, no
discrepancy can be detected. The luminosity range of the
giant branch is only slightly reduced, and the small blueward
shift of the giant branch is in the direction expected from
the "higher mass" turn-off stars. The luminosity and effec-
tive temperature of the clump of stars at the horizontal branch
is also unaffected. Furthermore, the time scales for these
three evolutionary stages are reduced by the same factor so
that the relative number densities of stars in each of these
stages is unchanged. Consequently, we would be unable to
detect a higher value of G in a nearby cluster.

A series of metal-poor BDI stellar tracks were computed
from the main sequence to the base of the giant branch in
order to examine in detail the effects of BDI on the turn-
off and sub-giant regicns of globular clusters. At the
present epoch (G = G,) there were no detectable differences
between the BDI and STD model globular clusters except for
' the apparent ages. The BDI model ages faster because of the
higher G in its early history and, at the present, looks

exactly like a slightly older STD model.
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Both STD and BDI galaxies were synthesized from the
stellar tracks assuming a single generation of solar-abundance
stars and the same cosmological model--where applicable--for
both types of galaxies. The BDI galaxy ages faster than the
STD one and appears redder in all colors at the present epoch.
Both models can be fitted to the observed broad-band colors
of giant ellipticals, and both exhibit almost parallel evolu-
tion of these colors with redshift. The V-magnitude evolution
- with redshift of both models is nearly the same for steep
initial functions, but the BDI model brightens more slowly
for shallower initial mass functions. 1In the latter case the
difference in magnitude evolution runs counter to that expec-

ted from L ~ G'2. Although the true deceleration parameter
true

in these cosmological models is q, . = %-Q = 0.1, the obser-
ved value will be q?bs = 1.1+x0.5 because the luminosity of

both model galaxies increases with redshift.

Thus, the Brans-Dicke cosmological models with higher
values of G in the past history of the universe do not
behave in a simple manner. In fact, many of the G-effects
cancel with one another and leave a very small net effect
upon the observable quantities. In comparing a star or a
galaxy of stars evolved under a higher G with those evolved
under a constant G, the only definitive statement which can
be made is that the high-G system has evolved faster and

appears older.



APPENDIX A. THE STELLAR EVCLUTION CODE
§1. Linearization of the Stellar Structure Equations

The equations of stellar structure (Schwarzschild 1958)
are solved for a one-dimensional stellar model. The depend-
ent variables to be solved for are pressure P, temperature T,

radius R, and luminosity L; the independent variable is chosen

to be s log(mass). The differential equations can then be

expressed as,

P = 3logP/3s = -Gm?/4wPR" (1)
T = 31ogT/3s = V-3logP/3s
V = 34nT/32nP = V. (convective, see §4.d) (2)
Vr.= (3Lg/16mac) « (kLP/GmT")
(radiative)
R = 3logR/3s = m/4mpR? ' (3)
L = 3L/3s = %nl0-(m/Lg) (e - T-dS/dt) . (4)

. All units are in cgs, except for the luminosity which is in
solar units (Lg = 3.90.1033 erg/s). All other symbcls have
their conventional meanings.

The construction of a stellar model begins by dividing
the star into M mass shells which are assigned a value sj =
log m;, where mj is the interior mass at the midpoint of
shell i. A starting--or previous in evolutionary time--model
is supplied with a run of (log Pj, log Tj, log Rj, Lj) for
i =1 toM. The differential equations of stellar structure

are then linearized with respect to first-order changes in

the dependent variables. A set of corrections, (Slog Pi’

130
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Slog Ti’ §log Rj, 87;) for i = 1 to M, is then calculated and

applied; the mass and composition remaining fixed at each

point. The pro

physically suit

cedure is iterated until a numerically or

able convergence is reachea.

The partial derivatives of the differential equations

“are required fo

notation aXY

follows.
alogRg
a1ogP£
along

81ogR-I-C
3arTc

a1ogP—£C
alogTEC

910gRLr
1Ly
alogPlr

alongr

alogR&
2R
a1ogP§

310gTR

31ogRL
a1ogP-£-
alogTL

r the linearization. By defining the shorthand

3Y/3X, one can calculate the derivatives as

(] "
[]
4
t *
© ©
o } =]
=
[ase] [ew]
L ] [ ]
o I

(5)

i
@
o
[
o

= +2n10-{(32nV_/34nR) - 4}-I.
=0

_ (convective) (6)
= -2n10-{1 - (32nV./32nP)}-I.

=-+2n10- (32nV_/38nT) - T

= -4+2n10-T,
= T,/L

(radiative) (6')
= +gn10-(32nK/32nP)T'£r

= +gn1o;{(aznx/aznT)P - 4}-2r

= —3'2,11.10.5
=0

(7)
= -2nl10-(32%np/32nP)-R

= -£n10-(32np/3£nT)P-

i

= 8L£ =0

= 'I_Il . . IS

= 2nl0 To 2nl10 {(Be/aznP)T+(BS/BZnP)T/At} (8)
—1 .m L o P

= 2nlo0 To 2nlo {(ae/alnT)P+(BS/aznT)P/At}
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The various partial derivatives of the physical quantities
are calculated as follows. The equation of state returns o,
(3%np/32nT) p, Cps> Vag and the pressure and temperature deriv-
atives of these quantities. The values of the two partial
derivatives of p are used directly in equation (7). The .
opacity routine returns the values of «k, (BZnK/aznT)p and

(aznn/aznp)T from which

(aznz/aznT)P (aan/BZnT)p + (aznn/aznp)T-(anp/BRnT)P

(Blnn/alnP)T

[

(32nm/32np)T-(anp/aznP)T
are calculated and used in equation (6'). The energy genera-

tion subroutine returns €, (ae/aznT)p and (ae/aznp)T from

which

(ae/aznT)P (ae/aznT)p + (ae/aznp)T-(annp/aznT)P

(ae/aknP)T (3e/3%np) 7+ (3&np/38nP)
are calculated and used in equation (8). The derivatives of
the convective gradient V. which are used in equation (6) are
calculated in the temperature gradient subroutine (§4.d).

The entropy term in the luminosity equations (4 § 8)
contains the only explicit reference to any time-dependence
in the stellar structure equations. It can be reformulated

as follows (Sweigart 1975),
s

Ate (-T-dS/dt)

‘ = Ate{-cp+dT/dt - (3&np/32nT)p-(dP/dt)/p}

; = At-E-(32np/04nT)p{(d20T/d1) /Vpq - (denP/dE)}
; = %-(aznp/alnT)P-znlo'(AlogT/Vad - AlogP),

| where At is the time elapsed and (Alogé, AlogT) are the changes

between successive models. This formulation has the advantage
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that one need not store any quantities from the previous model,
but must keep only the sum of the corrections to (log P,

log T). The partial derivatives of S are used in equation (8),

(35/32nT)p = S+{-q + (32nq/3enT)p}
+ (Pq/pV,q) {1 - (3&nV,q/82nT)p-2nl0-AlogT}
(35/22nP)y = §+{1 - (3%np/3%nP)y + (32nq/3%nP)y}

+

(Pq/p) < {-1 - (anvad/aznP)T-znlo-AlogT/V:’}
where q = (Binp/alnT)P. .

For the rest of this section and the following section
I shall adopt the shorthand notation of P = log(pressure),
T = log(temperature) and R = log(radius). One now sets up
and solves the difference equations for corrections tc the
dependent variables of the star%ing model (Henyey, Forbes and
Gould 1964). Ideally, one wants the differences in (P,T,R,L)
between two successive mass points to be determined by the

stellar structure differential equations (1-4), e.g.,

(P4-P; 1)/ (si-55.1)

%{(dP/ds)i+(dP/ds)i_1}
= %'Lgi + gi-l) 1<isM.
Thus, one can define a set of functions for every pair of

adjacent mass points,

Fp = (P3-Pj.1) - kbsj* (B3+R; 1) | 9)

F% = (Ti-Ti_l) - 1Asi°(li+li-1) (10)

F; = (Ri-Ri_l) - %As;* (Ry+R;5-1) (11)
i = - - L4

Ff = (L;-L; ) - %8s (L;+L; 1) (12)

where As; = (Si'si-l) and i = 2 to M. One wants then to solve

' i_ gl o gl - gl _
for the set of (Pi’Ti’Ri’Li) such that FP = FT = FR = FL =0

The linearization of equations (9-12) with respect to
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(GPi,GTi,GRi,GLi) yields 4M-4 equations for the 4M unknowns.
The 4 additional equations are supplied by the boundary con-

ditions at the center,

s = 3:R + log(4mp/3) > Fi = R, - {Sl-log(4wp/3)}€3 )
13
L*Lg = me(e-T+dS/dt) =~ Ff = L; - %g-(e-"r-dS/dt)1

= Ly - L;/en10 (14)
and those at the surface (§3),
Fg+1 E'RM - a;Py - 3, T, - a, (15)
+1 _ '
Fi 0 = L-tn10-(logly - a,-By - a5°Ty - ag). (16)
The F equations are linearized,
? 3F aF1 3Fl pFl i (16
=—5—°*08R; + —=—+8L. + —%—+8P. + ———+6T.| = -F

where i = 2 to M and the summation over j has non-zero terms
only for j = i-1,i. Including the boundary equations, one
now calculates the corrections to the previous model by sol-

ving a system of 4M equations in 4M unknowns.
§2. Solution of the Linearized Equations

Rather than solving the 4M by 4M system of equations
directly, one takes advantage of the specific form of the
equations and especially of the large number of zero elements
in the matrix (i.e., only 8 by 4M elements are non-zero at
most). The matrix is reduced in a forward direction (i=2-M)
as the coefficients are defined and is then solved in the
backward direction (i=M+1) for the corrections (GPi,GTi,GRi,GLi).

The linearized form of the central boundary conditions

(equations 13 § 14) and of the F equations (9-12) is shown
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explicitly in figure 1.a; that of the surface boundary condi-
tions, in figure 1.b. The matrix forﬁ cf the first set of
these equations is outlined schematicélly in figure 2.a, where
the zeros and ones are written explicitly and the x's denote
any possible non-zero number. The reduction procedure begins:
(i) using the boundary conditions, eliminate the first two
columns; (ii) continue diagonalizing the four bottom rows;
(1ii) store the right-hand side and the elements in the two
rightmost columns. This method is outlined in figure 2.
After this reduction is completed, the bottom two rows become
the "boundary equations' for the F equations of the next pair
of mass points. The method is repeatedly applied until the
.surface is reached, whereupon the surface boundary conditions
complete the set of 4M equations. For the back solution (i)
the values of (GPM,GTM) are first calculated, (ii) then the
values of (6Ri,6Li,6Pi_1,6Ti-1) fo; i =M to 2 are calculated
using the stored elements of the array and (GPi,GTi), (iii)
and finally the values of (6R1,6L1) are computed from the
central boundary condition and the values of (6P1,6T1). This
procedure for a 3-point stellar model is outlined in figure 3.
The set of corrections just computed (GPi,GTi,GRi,GLi)-—
or a fraction thereof--are applied to the dependent variables.
The entire procedure is repeated until either the corrections
or the right-hand side (i.e., the F functions) fall below a

preassigned level. At this point the model is assumed to be

converged.
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The reduction procedure is outlined in full since the
technique is not clearly explained in most references. The
form chosen for the F equations (9-12) is aifferent from most
other methods which use the form,

F§'= (P;-P5_1)/(s5-55.1) - %(B3*R;_41)-
While both the F and F' equations are mathematically identical,
the form used here has numerical advantages. For example, the
value of P ranges several orders of magnitude from the center
of the star to the surface while the value of P = log(pressure)
has a range less than an order of magnitude (similarly with
T and T, R and R). Hence, when one is near the correct solu-
tion (F = F' = 0), the non-zero values of F and F' due to
numerical round-off will be of‘order e+P for F and ¢-P for F'
where e is the relative machine accuracy. Thus, it is diffi-
cult to apply a simple test for convergence of the model on
F' throughout the star, but the value of F can be reliably
tested (e.g., [F%l <20+¢ for i=1,M). This test will determine
when the model has converged to the best accuracy possible on
a given computer and thus save both the time taken for the
back solution and the application of numerically questionable
corrections.

Henceforth, the shorthand notation will be dropped, and
I shall revert to the notation P = pressure, T = temperature,

R = radius and L = luminosity (in solar umits as usual).
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+
10 xx a +10xx a
01 xx a 0 1 xx a
x0x0x0x0 a 00XXx0x0 a
XX XXXXXX a 0 x X XX XXX a
x 0 xxx0xx a 00 XXx0xx a
0-1 xx01xx a 0-1 xx 01 xx a
(a) (b)
¥ 4
1 0xx a 10xx a
+ 01 xx a 0 1 xx a
0 0 xxx0x0 a 0 0xxx0x29 a
0 0 XXxx XX a 00X XX 0XX a
0 0 xxx0xx a 0 0 xxx0xx a
00XX01xx 2 +00xx01xx a
(c) (d)
+ ¥
10xx a 10xx a
0 1 xx a 01 xx a
00XX00XX a 00X000XX a
00XX00XX a ~00X100XX a
+00XX10XX a 00X 010XxX a
0 0xx01xx a 00X001XX a
(e) (£)
¥
10xx a
0 1 xx a
+001000XX a
000100XZX a
000010XX a
000001XX a
(g)

Fig.2.---The reduction algorithm. This technique is applied
to the linearized equations for each pair of interior
mass points from the center to the surface. The matrix
block is denoted by 0's, 1's, and x's (0#x#1); the right-
hand side,by a's. The first two lines are either the
central boundary condition or the last two lines from the
previous reduction. The scheme proceeds from (a) through

(g). The pivotal element is denoted by arrows; the

elements changed through pivoting, by X or a.



139

CENTER ([10xx a 10xx a
B.C. glex a 0lxx a
XXXXXXXX a 001000&& a
POINTS |xxxxxxXxX a 000100§{ a
1 § 2 jxxxxxxxx a 000010&& a
| XXXXXXXX a 000001xx a
¢ XXXXXXXX a XXXXXXXX a
POINTS XXXXXXXX a XXXXXXXX a
2§ 3 XXXXXXXX a XXXXXXXX a
L XXXXXXXX a XXXXXXXX a
SURFACE 10xx a 10xx a
B.C. [ 0lxx a 0lxx a
(a) (b)
10xx a 10xx a
01xx a 01xx a
001000xx a 001000xx a
000100xx a 000100xx a
000010xx a 000010xx a
000001xx a 000001xx a
001000XX 2 - 001000xx a1
000100XX § 000100xx a
000010XX a2 000010xx a
000001XX 2 000001xx a
10xx a 0010 a
0lxx a 0001 a
(c) (4)
10xx a 10xx a
01xx a 01xx a
001000xx a 00100000 a
000100xx a 00010000 a
000010xx a 00001000 a
000001xx a 00000100 a
00100000 2 00100000 a
00010000 a 000100060 a
00001000 a 00001000 a
00000100 4 00000100 a
0010 a 0010 a
0001 a 0001 =2
(e) (£)
Fig.3.---Schematic Henyey solution for a 3-point star. The

notation is the same as in fig.

2. The final reduction

to the identity matrix is not shown.
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§3. The Boundary Conditions and the Envelope Integrations

The application of the central boundary conditions has
been described explicitly in the previous sections and is
based upon a first-order integration at the center of the star.
~The radius equation is calculated from

dm = 41pR*dR > [rldm = 4ﬂplf§1R2dR
> my = 2Ze0iRy
assuming that p = p; i$ comstant for O < m < m, . Likewise,
the luminosity equation assumes that (e + T+dS/dt) is constant.
dL-Lg = (e+T-dS/dt)dm = L; =T +(e + T+dS/dt),

The surface boundary conditions are more complicated and
require the integration of model atmospheres and envelopes.
Given the {(log L, log Teff) and the total mass M, the radius
at the base of the atmosphere (T = 273) is determined by L-L9
= 4nR2-cT;ff, and the surface gravity is calculated from g =
GM/R?. The atmospheric values of P are computed by integrat-
ing log P vs. log © from 1<<1 to 1 = 2/3 for a plane parallel
2tmosphere.

dlogP/dlogt = gP/kT (17)
The atmosphere is assumed to obey a scaled solar T(tr) relation,

which in this case is assumed to be that given by Krishna-

Swamy (1966).

T (1) = %-T;ff~(r +1.39 - 0.815-exp{-2.54+1}
- 0.025-exp{-30.0-71}) (18)
The starting values of (P,,t1,) are chosen by selecting a small

density < and then computing,
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P, = (a/3)-T} + o RT, .

where T, = T(t=C). Then (P,,T,) gives p, which gives
Ko(pl,To) which gives 1, = KOPO/g. This method could be iter-
ated upon by redefining T, = T(t,) and so forth, but sufficient
accuracy was achieved in the atmosphere integration by choos-
ing a small enough p,(e.g., p°=10‘10) such that 1 < 10°%.

The envelope integration continues the atmosphere inte-
gration deeper into the star using the spherical stellar

structure equations (Schwarzschild 1958) with log P as the

independent variable and assuming a constant luminosity.

dlogT/dlogP = V (19)
dlogR/dlogP = -PR/Gmp (20)
dlogm/dlogP = -47R*P/Gm? ‘ (21)

The values of (P,T) at the base of the atmosphere, the value
of R from (log L, log T.¢f), and the total mass M are used
for starting values. The integration is continued inward
until the mass value of the outermost point in the model is
reached. |
The integration procedure of Bulirsch and Stoer (1966)
was adopted for both integrations. This method uses polyno-
mial extrapolation based on the mid-point rule. It is self-
starting and automatically readjusts the present step size
and estimates the subsequent step size in order to comply
with the specified accuracy. Since the entire code with the
exception of the s = log(mass) values is in single precision,
the best feasible relative accuracy was found by experiment

to be ¢ = 3.10"% for both the atmosphere and the envelope.
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The values of (P,T,R) at the base of the envelope for
three envelope czalculations are needed in order to compute
the surface boundary coefficients (Kippenhahn 1967). One
solves the following system,

1 3y @y logR; logL, logT.¢¢,

[1ogp1 logT, 1 a, a,

llong '_LogT2 1 |- a, ag ag 1ogR2 1OgL2 logTeffz (22)

logP, logT, 1 a, ag a, logR, logl, 1ogTeff3
for the a;'s which are used for the surface boundary conditions,
log R = a;*log P + a,*log T * a, (23)
log L = a,*log P + a;<log T + a4 (24)

and for the calculation of the effective temperature,

log Toep = a7°log P + 3,°1log T + a4 . (25)
Here, the (log P, log T) refer to the values at the outermost
mass point in the model.

The initial model with an estimated (log L*, log Teff*)
1s triangulated in the (log L, log Teff)—plane by constructing
three envelopes of the form

El: (log L* - %A;, log Tepg* + %AT)

E2: (log L* - %A;, log Tgoeg™ - %4T)

E3: (log L* + 0, log Teff*) .
If subsequent models or if the model itself during convergence
moves significantly out of the triangle, the triangle is flip-
ped until it once again contains the model. The decision as
to which point of the triangle should be flipped--if any--can

be made by testing,

-

C'_i_ = f-{(log Li+1 - 10g Li+2)’(1°g Teff - log Teffi+1)

+ (log Teffi+2 - log Teffi+l)o(1og L - log Li+1)}’
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where £ = +1 is the orientation of the triangle (e.g., in the
example given £ = +1) and {i,i+1,i+2} is {123}, {231} or {312}.
The value of C; is tested against s-AL'AT where setting € = 0
gives exact triangulation and € > 0 allows the point (log L,
log Teff) to be at most € of a triangle outside. Begin test-
‘ing with 1 = 1 to 3, if éi < -e-ALoAT then flip point i,

log L; = log L.

i+1 ¥ log L

i+2 = log Li

log Teffi = log Teffi+1 + log Teffi+2 - log Teffi
f=-f

and repeat the testing again starting with i = 1 until ¢4
passes for i = 1 to 3. The envelopes that have been flipped
are then recomputed as are all the coefficients a; . The flip-
ping of the triangle instead of the recomputation of three
new envelopes about the projected values of (log L*, log Teff*)
often allows previous envelope calculations to be used in the
new triangle, thus saving costly envelope integrations. How-
ever, if any overall parameter such as the mass value of the
outermost point or the gravitational constant changes signifi-
cantly between models, then all three envelopes in the new
triangle must be recomputed.

The consistency of the envelope integrations with respect
to the interior solution has been tested by shifting the out-
ermost point in the model by over two decades in pressure.

The resulting model differences are of the order 10'4 or less

in (J.Og L, 10g Teff’ 10g R).
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a) Saha Equation

In solving the Saha equation for
lar material, I followed the notation
(1962). The form of the solution and

due to Sweigart (1974).

xI =
state,
v; = number fraction of atoms
T -
Ui =
xi = ionization energy of rth
atom i,
E = number of free electrons
+ 5/2
@ 2 T2 eme)®? an®
1 T RP h3
U
then it follows that
ME o
T - = 1
x-: E+1
T
x. =1
r=0 *
1 v I orext
E = {v.- TeX-} .
j=1 1 r=o0 1
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The Local Physics

ionization of the stel-
of Baker and Kippenhahn

the linearization is

Define the following quantities,

i fraction of atoms of type i in rth jonization

of type i,

degeneracy of rth ionization state of atom i,

ionization state of

per nucleus,

.exp{-xi/kT}

(a.1)

(a.2)

(a.3)

In the solution presented here, the formation of H, and H as

well as pressure ionization will ignored.

All metals will be

considered as only singly ionized at most, and thus hydrogen

can be treated as a metal.

Henceforth, the subscript z shall

refer to all metals and hydrogen--everything but helium.
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Using equations (a.l-a.3), one can derive the following

expressions,

x; +x; =1
0 1 2 _
xy + Xy + xy =1
where y refers to helium,
E -
x%-1+E = K3+ (1 - x}) (a.4)
1,_E_ _ 0.(1 - x! - x2) (a.5)
1 E - % y ~ Xy '
Z.L =K1‘ 1 . (a 6)
*y 14E y Xy - .
- P o2 1
E = voe(xy + 2 xy) + évzxz . (a.7)

Equations (a.4-a.7) give (3+N) equations for the (3+N) un-
knowns: E, x!, x§, x;, where there are N metals including
hydrogen. Since the values of K are fixed for a given (P,T),

the values of x; can be solved for directly as a function of

E.

x} = K3/ (K§ + E/(1+E)) (a.8)
We now have three equations to solve.

= - eyl «x2

0 = E {vy (xy + 2:x3) + ;vzxz} (a.9)
= %o, - oxl o w2y o g1,

0 Ky (1 Xy xy) Xy E/(1+E) (2.10)
= wloyvl _ 2, :

0 = Ky Xy Xy E/(1+E) (a.11)

Given initial estimates of (E,x;,x;), one can linearize equa-
tions (a.9-a.11) and solve for corrections to the initial

(E,x;,x§). The variation of the x; can be expressed as changes

in E by
2

ax;/aE (1+E) -x;/(K;+E/(1+E))

x3+(1 - x1)/(E-(1+E)) . (a.12)
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Care must be taken so that (1 - x;) is numerically well defined
in the 1limit of full ionization, i.e.,
(1 - x}) = E/{(2+E)~(K} + E/(1+E))}.

One then has the following matrix equation.

2evy vy -1-;vzx;(l-xé)/(E-(1+E)) Ax;
0 o 1 2 1
Ky KY+E/(1+E) xy/(1+E) X Axy
E/(1+E) K} x;/(1+E)2 AE
E - {vy-(x; + 20x3) + ;vzx;}
= K;-(l - x} - x§) - x}-E/(1+E) (a.13)
1owl _ 2.
Ky xy xy E/ (1+E)

After iteratively solving equation (a.13) until conver-
gence, one now needs the temperature derivatives of the basic
quantities and their linearization with respect to P and T
for the overall Henyey scheme. Since we have solved for the
correct values of_(E,xl,x;) which satisfy equations (a2.9-a.11),

we may differentiate the equations to solve for the derivatives

of (E,x%,x;). Let q be any arbitrary variable and 3q = 3/3q,
then
vy-aqx§ + Z-vy-aqx; - aqE + évz-aqx; =0 (a.14)
(KS+E/ (1+E)) +3.x} + Kj-3gx) + x;-(1+E)‘2-aqE
= - x; - x;)-aqK; (a.15)
-K+3ox] + E«(1+E) 1+30x% + x2-(1+4E) 2.3 E
= x;-aqK§ . (a.16)

By substituting the value of

aqx% = x3+(1 - x%)i{aqan% - 8qE/(E-(1+E))} (a.17)
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into equation (a.14), one sees that the coefficient matrix C
of (ax§/3q, ax;/aq, 3E/3q) is the same as the initial coef-

ficient matrix of equation (a.13).

ax§/8q -é{vzxé(l - x;)+(34nK$/3q)}
1 - 0, sl o 2y, 0 :
C x axY/Bq = +Ky (1 Xy xy) (aany/aq) (a.18)
1,41, 1
3E/3q +Ky Xy (82nKy/3q)

Thus, one can use the matrix reduction which was previously
calculated in the final iteration of equation (a.13) with the
new right-hand side of equation (a.18) to solve for the deri-
vatives.
The second derivatives can also be calculated as follows.
vy (3/3p(3x5/3q)) + 2+vy-(3/3p(3xy/3q)) - (3/3p(3E/3q))
+ E{vz°(8/3p(3x;/aq))} =0 (a.19)

{KS + E/(1+E) }-(3/2p(3x}/2q)) + K&+ (3/0p(3x3/3))

+ (1+E)"2+x}+ (3/2p(2E/3Q)) = (1-xp-x3)-(2/3p(3K$/3q))

- (2x}/8p + x3/3p) - (3K3/0q) - (3x}/dq + 3x3/3q) * (3KY/3p)
+ (1fE)‘2:{(1+E)'1-2-x;-(aﬁ/ap)-(aE/aq)

- (dxy/3p) - (3E/3q) - (BX§/3q)°(8B/8p)}
(a.20)

-K2+(8/3p(3x}/3q)) + E-(1+E)™1+(3/3p(9x7/3q))
+ (1+E)"2x2+(3/3p(3E/3q)) = x}-(3/3p(3K}/3q))
+ (3xy/3p) - (3Ky/3q) + (3xy/3q) - (3Ky/23p)
+ (1+E)"2-{(1+E)"1-2x}+ (3E/2p) - (3E/3q)
- (axj/3p) - (3B/2a) - (3x5/3a) - (3E/3p))
Once again, by substituting
(3/3p(8xL/3q) = xL-(1-x1)+{E+(1+E)} %+{-(3/3p(3E/3q))
+ (1+2E)+(3E/3p) *(3E/3q) + (3/3p(32ankK3/3q))}

+ (1-2x1)-(2x}/0p) - {32nK3/8q - (3E/3q)/(E+E)}
\ (a.22)
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into equation (a2.19), one arrives at the matrix equation for
the second derivatives.

(3/3p (3x3/3q))

C x |(3/3p(3xy/3q))| =

(3/3p(3E/3q))
(-3vz e (x2-(1-x1)-{(5/3p(34nK5/3q)) + (1+25)-(E+E2)‘2-(3E/ap) .
i (dE/3q)} + (1-2x1)-(3x}/3p)-{(32nkKs/3q)
- (3E/3q)/(E+E®)})

(1-X§-X§)°(3/BP(BK§/BQ)) - (BX}/ap + 3x;/3p)°(3K§/3q)
- (3x§/3q + 3x%/3q) - (3KJ/3p) + (1+E)'2-{(1+E)'1-z-x;
* (3E/3p) * (3E/3q) - (3xy/3p) - (3E/3q) - (3xy/3q)-(3E/3p)}

xy*(3/3p(3Ky/3q)) + (3xy/3p)-(3Ky/3q) + (3xy/3q) - (3Ky/3p)
+ (1+E) 2. {(1+E) "1+ 2-x2+ (3E/9p) + (3E/2q)
] - (3xy/3p)* (3E/3q) - (3xy/3q)- (3E/3p)}

(a.23)
" The derivatives of K which are used in the previous

equations can be easily found,

(32nK/82nT) = 5/2 + 4(1-8)/B + x/kT (a.24)
(3enkK/3&nP) = -1 - (1-B)/B = -1/8 (a.25)
(3/32nT(3nK/3nT)) = 16(1-8)/82% - x/kT (a.25)
(3/3enP(32nkK/32nT)) = -4(1-8)/8B% ,

and can be put in the form

(a.27)
(3/5p(3K/3q)) = K-{(3/ap(a2enkK/aq))+(3anuK/op) - (32nK/3q)}.

The previous derivations will now allow one to calculate
all the necessary properties of a non-degenerate gas for a
given (P,T) and composition, including their linearizaticn

with respect to (P,T). Let u, be the mean atomic weight per
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atom and Yo be the mean weight per electron, then the total

mean molecular weight u can be expressed as

=== +

1_1 .1 _1 ,E _ (1+E) (a.28)
T TH e T T T M, -

Since Uy is fixed for a given composition, the density can

be calculated from

8P = Rep-T (1+E) /u, ‘ (2.29)
where B8 has the usual definition,
= . = _ .Té

B = Pgas/P =1 (a/3)T7/P . (a.30)

The first and second derivatives of the density are readily

calculable.

(3np/3enT),, = -1 - 4(1-8)/8 - (aE/aznT)P/(1+E)( )
. a.
1/8 - (8E/3£nP)T/(1+E) (a.32)

-16(1-8) /8% + (BE/BlnT)%/(1+E)2

(aznp/aznP)T

(a/aznT(Blnp/alnT)P)P

(3/34nT(3E/32nT)p)p/ (1+E)

(a.32)
(B/BQnP(aznp/BZnT)P)T = +4(1-B)/B2 ?
+ (9E/9%nP) - (3E/34nT)p/ (1+E)? -
- (a/aznP(BE/BEnT)P)T/(1+E) (a.33)

The internal energy of the gas per unit mass is a com-
bination of the gas prescure, the radiation pressure and the

ionization energy.

3 T ,T ‘
U = ('2—°Pgas + 3'Prad + z z nix'i)/p (a.34)
i r=1

n{ = number of i-atoms in rth ionization state

= T R 1

= V. eX: L epe

1 uag Kk

x'{ = total energy of rth state above the ground level

0 1 r-1
Xp X3t e e e T Xy
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By noting that P ., 4 = Pgas°(1-8)/8 and letting T{ = x'{/k be
the temperature corresponding to the ionization energy, one
can express the internal energy as

U=Q® .{(3/2 + 3-(1-B)/8) *(I+E)-T + Z\,irzlx{-'r{}

Ha
T (a.35)
and its temperature derivative as

(ou/0T), = R -((1+B)+(3/2 + 3-(1-8)/B + 12-(1-8)/8%)

+ (3/2 + 3'(1’8)/8)'(3E/32’HT)P + Z\)i ‘Zgaxli‘/agnT)P'Ti/T}.
T (a.36)
The derivatives of (aUlaT)P with respect to &n P and &n T are

then given by
(3/34nP (3U/3T) p)p = %é-(-(1+E)-(24-98)'(1-B)/63
+(3/2 + 3+ (1-8)-(4+8)/B%)+ (3E/3%nP) 1
-3+ (1-8) - (3E/22nT) /87

+(3/2 + 3-(1-8)/8)-(3/34nP(RE/2enTy)

+ Z“i 2§a/aznpcax§/aznT)P)T-Tg/T ] (a.37)
1 T=
(3/32nT(3U/3T)p)p = Bﬁ'[(14E)-4-(24-98)-(1-6)/83

Ha
+(3/2 + 3+(1-8) - (8+8)/8%) - (3E/340T) p

+(3/2 + 3-(1-8)/8)-(3/32nT(3E/32nT)plp
+ Jv; I{(3/22nT(3x]/84nT))p - (ax§/aznT)P}-T§/T].
; 21
v (a.38)
The specific heat p and the adiabatic gradient V_q along

with their derivatives are then calculated.

cp = (3u/3T)p - (P/pT)-(BSan/aznT)P (a.39)
(3%nc,/32nP) 1 = cp'1¥{(3/32nP(aU/aT)P)T
- (P/oT)+(3%np/3%nT)p- (1 - .(3%np/3LnP))
-(P/pT)-(a/aznP(alnplaznT)P)T} (a.40)
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(azncp/aznT)P = cp°?¥{(8/aznT(aU/aT)P)P
+(P/pT)-(32np/32nT)P-(1 + (aznp/aznT)P)
-(P/pT)-(a/aznT(aznp/BlnT)P)P} (a.41)

Vaa = -(P/pT)-(aRnp/aznT)P/cp (a.42)

(aznvad/aznP)T =1 - (8znp/32nP)T - (alncp/alnP)T
+ (a/aznP(aznp/alnT)P)T/(Ban/BZnT)P (a.43)
(aznvad/aznT)P = -1 - (eznp/eznT)P - (82ncp/82nT)P

+ (a/aznT(alnp/anT)P)P/(alnp/BZnT)P (a.44)

In the computation of the mean atomic weight, the physi-
cal scale of weights is chosen in which R = 8.317-107 erg/°K/
mole. The abundance of metals ?s taken from the abundances
given in the opacity tables of Cox and Stewart (1970).

Abundance by Weight

Element Z A Z = .01 Z = .02
H 1 1.0083  ----- = =----
He 2 4.0039  ----- = -=---
C 6 12.0150 0.00141 0.0G6282
N 7 14.0112 0.00046 6.00092
0 8 16.0045 0.00420 0.00840
Ne 10 20.190 0.00298 0.00597
Na 11 22.997 0.00001 0.000053
Mg 12 24.320 0.00018 0.00036
Al 13 26.990 0.00001 0.00003
Si 14 28.10 6.00026 0.00053
Ar 18 39.960 0.00039 ¢.00078
Fe 26 55.865 0.00008 0.00017

z 0.00998 0.02001
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The constants used for computing the K's are taken from

Allen (1963, p.35).

Element 2 xg(e.v.) xi/k(°K) 10g(2-Ur+1/Ur)*

H 1 13.595 157800 0.00
He 2 24.581 285270 0.60
He* 2 54.403 631370 0.00
c 6 11.25%6 130630 0.11
N 7 14.53 168630 0.64
0 8 13.614 158000 -0.04
Ne 10 21.559 250200 1.03
Na 11 5.138 59630 -0.01
Mg 12 7.644 88710 0.60
Al 13 5.984 69450 -0.47
Si 14 8.149 94570 0.08
Ar 18 15.775 183080 0.99
Fe 26 7.87 91330 0.49

* for T = 5040 °K
b) Fully Ionized Equation of State

The calculation of the density of a fully ionized gas
from the pressure, temperature and mean weights (u,, u.) be-
comes successively more complex as the electrons become par-
tially degenerate and also partially relativistic. Since
the radiation pressure is simply calculable and the nuclei
are always assumed to be non-degenerate and non-relativistic,
one is left with the calculation of the electron pressure,
its derivatives and the internal energy. The method in gen-
eral is an iterative one which uses an initial estimate of
the density to predict an electron pressure and hence a total
pressure. The initial density estimate is corrected accord-
ing to the difference between the giveﬁ pressure and the

predicted pressure.
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The equation of state used by this code is taken entirely
from the work of Dr. Allen Sweigart (1974) to whom I am great-
ly indebted. It employs moderately large tables (4300 values)
which cover the temperature range log T = 5.20-9.00. The
equatior of state is correct in the region of partially degen-
‘erate, partially relativistic electrons as well as in all the
other limiting cases.

The notation and formulation which follow are taken from
Sweigart and also from box and Giuli (1968). The subscript 4
refers to atoms or nuclei; the subscript ., to eslectrons; and

the subscript ,, to radiation. By defining,

Iw N (1+38x) Zdx

Fy(m,8) = . l+exp{-n+x} , N> -1 (b.1)
and B = kT/mec2 (for this section By = 1 - (a/3)-T4/P)

the values of the electron number density n,, the electron

pressure P, and the electron internal energy per unit mass Ug

can be derived.

-3
ng = 41 (2m k™) %077 (F ,(n,8) + BeFg)5(n,8))
= C10T3/20¢(n,8) (b.Z)
Pe = STkT(2m k1) ¥/ 2073 (Fy , (n,8) + 4B-Fy 5 (n,8))
= C7+T5/2:1(n,8) (b.3)
oU, = 4_13‘kT(zmekT)3/2h'3-{F3/2(n,e) + B+Fg,,(n,8))
= C5-15/2-9(n,8) (b.4)
Then, p/ue = C4-T3/2-¢(n,e) where C4 = Cl-Mu (Mu = mass unit)
and 3
log(p/ue) = log Cy + Slog T + log ¢(n,8) (b.5)

log P = log C, + élog T + log A(n,B) (b.6)
e g 2 2
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log(ugUg) = log Cy + 3log T + log ¥(n,8) - log(p/u,)

2
®d.7)
By using the definition of (p/ue) and B8, one can derive
(aan/BQnT)p = 1 and (32n6/32np)T =0 (b.8)
and also
(aznn/aznT)p = -(3/2 + (32n¢/82n8)n)/(azn¢/32nn)B
(b.9)
(aznn/aznp)T = 1/(32n¢/32,nn)B (b.10)
where (3¢>/an)B = (aFllz/Bn)B + B-(3F3/2/3n)8 (b.11)

(34/38), = (3Fy;,/38) * Fg,, + B+ (3F5,,/28), (b.12)
are readily calculable given the values of n and B. The
derivatives of P, and U, can then be calculated.

(aznpe/aznT)p = 5/2 + (3&nA/32nT) ' (b.13)

= 5/2 + (anA/BEnn)B-(SZnn/aznT)p + (aznx/azns)n

(32nP./32np)p = (32nA/32np)

= (anklaznn)s-(Blnn/Ban)T (b.14)

(aane/aQ,nT)p = 5/2 + (azanBZnT)p (b.15)

= 5/2 + (aznw/aznn)s-(aznn/aznT)p + (aznw/azns)n

The following five tabies are set up

1. 1log P

2. log(uele)

3. log{Pe-(aznPe/aznT)p}

4. (32nPe/82np)T

5. log{ueUe-(aane/BQnT)p}
These tables are two-dimensional in X = log(p/ue) - %-1og(T)
and in Y = 1log(T). A given (X,Y) value implies a unique (n,R)

value from which the Fy(n,B8) functions and their derivatives
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may be calculated. These five tables are cross-tabulated at
20 equal intervals in Y from 5.20 to 9.00 and in 43 unequal
intervals in X from -16.00 to -3.00. The unequal intervals
in X were selected by Sweigart in order best to describe the
variations of the five quantities and to achieve maximum -
accuracy in the tabular interpolation.

Interpolation within the tables uses three points in
both X and Y. To calculate a value of F(X,Y) where F is one
of the tabulated functions, assume that one has located the
bounding table values of X and Y,

Xl < X < XZ < X3

Y; s Y <Y, <Yz
~and let Fij = F(Xi,Yj). Since the spacing in Y is uniform,
H = AY = Yy-Y; = Yz-Y,, one uses Newton's forward interpola-
tion formula,

F; = F;; + usAFy; + Bu(u-1) -A’F. (b.16)

where

AFj1 = Fiz - Fy3, AF35 = Fy3 - Fip

2 = - .
Since the spacing in X is non-uniform, one uses Lagrange's
interpolation formula,

F=L*E, + L,*FE, + L.*F

1°E; * LyEy + Lok, (b.17)

where
Ly = (X - X3.1) (X - X3 ) MUKy - X3up) Xy - Xy9))

{i i+1 i+2} = {123}, {231}, {312}
One now has the functional value F at (X,Y). The derivatives

of F follow from the interpolation formulae used to calculate F.
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(3F/3Y)y = Ly (3E;/3Y)y + L,=(3E,/3Y)x + L3-(3E3/3Y)y
(3E;/3Y)x = H'1:{aF;; + (u-%)+A%F  } (b.18)

(3F/3X)y = E;*(3L;/3X) + E,-(3Ly/3X) + Eg*(3L3/3X)

(3L3/3X) = {(X-Xj,1) * (X-X3.2) H/T(X;-%;,9) (X5-X;5,5)}

(b.19)
(3%F/3X%)y = E4-(32L;/3X?) + E,-(3°L,/3X?)
+ Ez° (3%L3/03X?) (b.20)
(32L;/0X?) = 2/{(Xj-X5+1) (X1-Xj4+2)}

The derivatives with respect to p and T are then,

(3F/dlogT) | = (3F/3Y)y - 3+ (3F/3X)y (b.21)
(3F/3loge) = (3F/3X)y (b.22)
(BzFlalogpz)T = (3%F/3X%)y . (b.23)

By using the first table (F = log Po), one can calculate the
density derivatives of log P, and hence, the density deriva-

tives of the total pressure P.

(31logP/3logp) = {P, + P, (31logPe/31logp)T}/P (b.24)

(321ogP/3logp?) = znlo-[{Pa + Pg+ (3logP,/dlogp) 2
+ Pg- (321ogP,/31logp?)1/2n10}/P - (alogPlalogp)%}
(b.25)
Corrections to the initial density estimate are made by using
these derivatives and the difference between the given pres-
sure P, and the pressure predicted from the estimated density,
P =P, + Pg + Py
= %gPT + Py + (1-8,)°P, . (b.25)

The first-order correction to the density by the Newton-

Raphson formula is
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A,{log(p/ug)} = -(logP - logP,)/(31ogP/3logp) (b.26)

and the second-order correction is

A,{log(p/ueg)l = A, - %A%-(azlogP/alogpz) /(3logP/31logp) ...
T (b.27) T

The second-order correction is applied and the process is
repeated until the corrections are of the order of the numer-
ical accuracy of the computer.

One now has a value of p--and also X and Y--which is
consistent with the given (P,T,u,,ue). The values of P,
(BZnPe/aznT)p and (aznpe/aznp)T can Be computed directly
from the tables. Their derivatives,

(8/82nT(Pe°(BlnPe/BQnT)p))p
(S/ainp(Pe-(aznPe/aznT)b))T
(3/32np(32nPe/32np)T)T
can be calculated from the interpolation formulae. One can
then compute the first and second derivatives of the total

" pressure with respect to density and temperature.

(aznP/aznT)p = (Pa + Pe-(BEnPe/aznT)p)/P + 4-(1-84)
(b.28)
(aznp/aznp)T = (Pa + Pe°(32nPe/32np)T)/P (b.29)

(3%2nP/22nT?) | = {P, + (3/3anT(Pg-(320P./32nT))),}/P
+ 16+(1-8;) - (22nP/32nT)2 (b.30)

(3/32np(32nP/32nT)p)T = (3/32nT(32nP/82np)T)p
= {Pa + (a/alnp(Pe°(BQnPe/BZnT)p))T}/P

- (aznp/aznp)T-(aznp/aznT)p (b.31)

(32%mP/3gnp?)y = {P, + Pg-((32nP./38np)32

+ (32nPe2/32np?))}/P - (3imP/3tnp)s  (b.32)
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The derivatives of the density with respect to P and T can

then be calculated.

(aznp/BZnP)T = 1/(32nP/32.np)T (b.33)
(320mp/32nP2)p = -(322nP/2gnp?) - (98np/3nP)>  (b.34)
(3%mp/24nT)}, = -(3nP/34nT) - (3%np/d4nP)y (b. 35)

(3/352nP (38np/3enT)p)p = -(aznPlalnT)p-(azlnp/azan)T
- (3/320p (34nP/34nT) )1+ (320p/32nP)7 (b.36)

(322np/32nT2)P = -(aznp/aznT)p-(a/aznpcaznp/aznT)P)T
-(aznp/aznP)T-{(azznp/aznTz)p

+ (aznp/aznT)P-(3/aznp(aznp/aznT)p)T (b.37)

The internal energy, its derivatives, the specific heat
"and its derivatives can be calculated from the functional

values F in tables 2 and 5 and from the previous derivatives

of P, p and T.

U=1U, + U, + U ' (b.38)

4 3
= 2.p,/0 + Ve + aT'/p = E~§;T + Ug + 3(1-B,)<P/p

(aan/alnT)p = (Uy + Ue-(aane/alnT)p + 4.Ur)/U(b.39)
(aan/BRnp)T = (P/oU) (1 - (aznPlaznT)p) (b.40)
(32nU/82nT)P = (anU/aznT)p + (aznp/aznT)P-(aan/aznp)

(b.41) T
(3%2nU/32nT?) ; = {U, + (3/32nT (Ug- (32nUe/34nT) )],
+ 16-U,}/U - (aan/aznT)g (b.42)
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(a/aznp(aan/aznT)p)T = (a/aznT(aan/aznp)T)p
= (aan/aznp)T°{(anP/aznT)p - (aan/alnT)p}
- (P/oU)-(32enP/34nT?) (b.43)

With the aid of equations (b.40) and (b.41) the specific heat
can be expressed in terms which are more convenient for dif-

ferentiation.

<p (BU/BT)P - (P/pT)+{3np/32nT)p

(U/T) * (3%nU/3%nT)

-(p/pT)o(aznp/aznT)PJ(aznp/aznT)p (b.44)

(3cp/3enT)p = (U/T)+((320U/32nT) + {(22nU/38mT)p - 1}
(azan/aznTZ)p +.(32np/32nT)P-(a/alnp(aan/alnT)p)T}
(P/pT)-((aznp/QZnT)P-{(822nP/32nT2)p
(aznp/aznT)P-(a/aznp(aznp/aznT)p)T}

+

+

+

(aznp/aznT)p-{(a/aznT(aznp/aznT)P)P
(aznp/aznT)P-(-1 - (BanlaznT)P)}] (b.45)

+

(acp/alnP)T = (U/T)-(aznp/aznP)T-((a/aznp(aan/alnT)p)T
+ (aan/aznT)p-(32nU/82np)T}
- (2/0T) - {(32nP/320T) +{(2/320P (34mp/220T) p) 7
+ (aznplalnT)P-(l - (anp/aznP)T}
+ (aznp/aznT)P-(aznp/aznP)T-(a/aznp(ainpjaznT)p)T}
' (b.46)
All of the above quantities on the right-hand side have been
derived previously. The values of U, and Ue-(aane/aznT)p are
taken directly from the tables; the second-order derivative
of U, is calculated from the interpolation method. The

adiabatic gradient and its derivatives are the same as in §4.a.
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Since the solution of the Saha equations in §4.a allows
for only Single ionization of the metals, it will not agree
with the general equation of state which assumes full ioniza-
tion of al}l metals. Thus, it is necessary to choose a regime
in which the Saha quantities are merged smoothly with those
'of the general equation of state. Since the ionization is
mainly a function of temperature, I have chosen a temperature
region where the helium is fully ionized in most cases to
interpolate between the two equations of state. One selects
two parameters such that

log T < (log T, - Alog T) » Saha only
and log T > (log T,) + general equation of state only.
In the intermediate region one defines

> = (log T, - log T)/Alog T , (b.47)
where x = 1 in the limit of Saha only, and x = 0 in the limit
of no Saha. All of the interpolated quantities should be
smooth in this region,and thus, I have selected the lowest
order polynomial f(x) such that

f(0) = 0 and f(1) =1

£Y(0) = £'(1) = 0 (b.48)
£7(0) = £7¢1) = 0

which gives
£(x) = x3(6x% - 15x + 10) = 1 - £(1-x) (b.49)

£1(x) = 30x%(1 - x)2

f'"'(x) = 60x(2x2 - 3x+ 1) .
The interpolaticn proceeds as follows where subscript , refers

to Saha values and subscript , refers to general equation of

state values.
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log p = log p, + £-(log P, - log p,) (b.50)

(3%np/34nT), = T

(b.51)
= 3T & g.¢3T - Ty . _ Y
93 (3, 3;) (logp, logp,) /(AlogT)

(3gnp/3¢nP) ;. = P (b.52)
=3P + £.00 - 3By

87 (b.53)
= 331 + £-(33) - 331) - 2-(3T-5T)-£'/(2n10-A10gT)

(B/BZnT(alnp/aznT)P)P

+ (logpo-logpl)-f"/{lnlo-(AlogT)z}

(3/32nP(34np/34nT) p) g = 3af (b.54)

= 308 + £-(33) - a3) - (aB-9B)-£'/(2n10-a10gT)

The adiabatic gradient and the specific heat are treated aiike.

Vaa = Vad,* £:(Vad - Vag,) (b.55)
(3V2a/02nT)p = 3.4 (b.56)
= 3£d1 * f‘(agdo - 3£d1)
- (Vaq, - Vad,)*f'/(#n10-AlogT)
(3Vaq/82nP) . = 3y (b.57)

- P
= 939, * £+ (38q, - %ad,)

C) Opacities

The code utilizes five opacity tables. The first two
tables are for compositions (X,Z) = (X4,24) and (X,Z) = (0,Z,)
where X,and Z, are the initial hydrogen and metal abundances

of the homogeneous main sequence model. These radiative
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opacities are the Rosseland-mean opacities of Cox and Stewart
(1970). Where the value of X, is not tabulated, a fourth-
order Lagrangian interpolation of ¥ vs. X is used with the
five tables given by Cox and Stewart to compute K(XgsZ4)-

The third opacity table is the radiative opacity for (X,Z) =

(0,1) (Iben Mix XX, Cox and Stewart 1970). The last two

tables are conductive opacities for (X,Z) = (1,0) and X,2) =
(0,0). The values of the conductive opacities for log p g 6
are taken from Hubbard and Lampe (1969) and for log p > 6,
from Canuto (1970). All of the tables are in the standard
form used by Cox and Stewart (1970) with 8 density entries

at each of 29 temperature entries. The tabulated values of
the last two tables are from Sweigart (1974).

From a given table of log k vs. (log p, log T), the
value of the opacity k and its derivatives are calculated as
follows. Locate the "box" which contains (log o, lbg ),

log P, € log p < log p,
log T, s 1log T < 1l0g T,, (c.1)

and define

A, = log k(p,,T,) - log x(p,,T,) , (c.2)

which are the density derivatives (aznx/aznp)T at T, and T,

since (log Pie1 - log pi) = 1 for zl1l1 table entries. Then

define

log k, = log k(p,,T,) + A ,+(log p - log p,)

log x(p,,T,) + A,+(log p - log p,). (c.3)

log K,
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The derivatives of the opacity and the value of the opacity

can then be interpolated.

(3fnk/3gnp)y = A; + (L,-4;)+(1ogT - logT,)/(logT,- 1logT,)
(c.4)

(aan/alnT)p = (logk, - logk,)/(logT,- 1logT,) (c.5)

log ¥ = log k, + (anK/aznT)p-(logT - logT,) (5.6)

For the calculation of the radiative opacity a combina-
tion of the first two tables or the second and third tables
is often needed. 1In the case of 0 < X < X, and‘Z = Z,, the
value of k (not log k) is interpolated linearly in X.

K(X,Z,) = (X/X,)x(X,,2,) + (1 - X/X,)x(0,2,) (c.7)
The values of the derivatives follow from the method of inter-
polation,

(3&nk/32nq) ='{(X/Xo)-K(Xo).-(aznm/aznq)xc

+ (1 - X/Xo)-K(O)-(aznx/aznq)o}/K(X) (c.8)

where q = p or T. Likewise, the opacity for Z, < Z < 1
(assuming X = 0) is interpolated Hetween k(0,Z2,) and x(0,1)
with a weighting factor (1-Z)/(1-Zy).

The value of the conductive opacity is calculated by
interpolating linearly in X and then scaling linearly with Z.

Ke(X,2) = (1+Z)+ (X-xc(1,0) + (1-X)-k.(0,0)) (c.9)
The derivatives of k. are computed as in equation (c.8) with
X, = 1 and are unaffected by the (1+Z) scaling.

The true opacity is the inverse mean of the radiative

opacity k., and the conductive opacity k..
l:l-&-l‘.
K Kp Ko > K = Kpeke/ (ke *+ kc) (c.10)
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The derivatives then become,
(3enk/32nq) = k+{(32nk./328nq)/k, + (3%nk,/3%ng) /. }

where again q = p or T. (c.11)

In the code the calculation of the conductive opacity
is turned on when the reduction routine starts calculating
"the local physics from the interior of the star outward.
This calculation of the conductive opacity is switched off
by the opacity routine when the value of k./k, exceeds a set
value (=104) and stays switched off until the reduction
routine starts at the center of the model again. The conduc-

tive opacity is also ignored in the envelope integrations.
d) The Convective Gradient--Mixing Length Theory

The calculation of the convective temperature gradient
Ve in the envelope of the stellar models employs the mixing
length theory (Henyey, Vardya and Bodenheimer 1965, Kippenhahn
1967, Paczynski 1969). There are three free parameters in

this theory which are set as follows for my computations.

@ = &/H = 1 2 = mixing length (d.1)
H = pressure scale height

a, = 1/3 : (4.2)

a3z < 16V2-c (d. 3)

The latter two parameters have the same values as in Paczynski
(1969).

Defining &6 = Ve =Vagas the Sc@warzschild (1906) criterion
is used to determine convection: & > 0 - convective. In the
deep interior convection zones V. is set equal to the

adiabatic gradient V_gq4.
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In the envelope the evaluation of V_ is more complex,

and one begins by defining,

g = Gm/R2 (m = mass interior to R) (d.4)

H = P/pg (d.5)

w = pk? = o,pkH = a,kP/g - (d.6)

6 = (1 + a,w?)’l (d.7)
1

a; = a,-¢-kT{-H/gs(8anp/34nT)p} " (d.8)

as = 2¢0%/a; . ~ (d.9)

3, 42

The equation F(x) = a,x x“ + a,x - 1 is then solved for

y > 0 such that F(y) = 0. The root y is guaranteed to lie
in the interval (0,+1) since F(0) = -1 < 0 and F(1) = a, + a,
> 0. Further, this root y is uﬁique since the derivative of
F, F'(x) = 3a3x2 + 2x + a,, is positive definite for x > 0.
An initial estimate of the root y is made and a second-order
Newton-Raphson correction is applied.

Ay = -(F(y3/F'(¥)) - 5 (F(y) /B ()2 -F" ) /F' (¥) (d.10)
The initial estimate of y is y = 1/a,, unless a, > 103 in
which case y = (1/a3)1/3 which follows the asymptotic beha-

vior of the solution in either limit. Given the solution Yy,

the convective gradient is computed.

Ve = Vad * (Vp - Vaa)ey=(y + a;) (d.11)

The linearization of the convective gradient is cumber-
some but can be calculated. I shall consider derivatives

with respect to &n P, anT and 2nR, ignoring the luminosity

derivative.
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(avc/aznx) =_(8Vad/32nx) + y(y+a,;)-(38/32nx) (d.1i2)
+ 8+{(2y+a;)(dy/92nx) + a;y-(3&na,/32nx)}

where
(38/932nx)

(a(vr—vad)/aznx) (d.13)
(BVr/alnx) - (8Vad/aznx),

The derivatives of V,3 come from the equation of state,
(3v,q/9%nx) = Vaq® (32nV,4/32nX) (d.14)
and are non-vanishing only for x = P or T. The derivatives of
V. = (3/16mac) - (<LP)/(GmT*) (d.15)
are also non-vanishing only for x = P or T.

(3V,/32nT)

Vpeel-4 + (3&4nik/32nT)p} (d.16)

(3Vy/34nP) Vr°{+1 + (Blnn/alnP)T} (d.17)

The derivatives of y are functions of a; and a;.
(3y/3srnx) = -{a,y-(32na,/3nx) + asys-(aznaalalnx)}
/(3a,y2 + 2y + a,) (4.18)

The equation (d.12) for the derivatives of V. now becomes
(3v./3gnx) = (3V,4q/38nx) + y(y+a,)«(38/32nx) (d.19)
+ a3y36-{3a1-(82na1/82nx) - (2y+a,)+(3%na,/32nx)}
/(333Y2

where the only remaining unknown quantities are the deriva-

+2y+al) .

tives of a, and a,.
(8%na,/3gnx) = (3%n¢/3&nx) + (32nk/34nx) (d.20)
+ 3(32nT/%32nx) - (azncp/aznx) + Le(32nH/34nx)
- %+(38/32nx)/8 - %+ (02ng/3Lnx)

- %-(3/32nx(32np/32nT)p)/ (3%np/32nT)p
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(3&na,/3%nx) = 2-(32nw/32nx) + (3&n¢/32nx) (d.21)
- (3%na,/3nx)
The value of (38/32nx) has been previously calculated and the
derivative of q = (32%np/32nT)p and cp are computed by the
equation of state. By calculating the derivative of ¢,
(38n6¢/32nx) = -2a,0°¢- (32nw/320X) , (d.22)
and by expressing H and g explicitly, one can gather the
terms of equations (d.20-21) to produce,
(3na,/3%nx) = -20,0°¢+(3%nw/320x) - (3&nc,/32nx)
- Le(38/3enx)/8 - %-(3q/3anx)/q + %-(32nP/32nx)
+ 3+(32nT/54nx) + 2+(3&nR/32nx) + (9&nk/32nx)

- %+ (32np/32nx) . ‘ (d.23)
(52naz/agnx) = 2¢+(d4nw/32nx) - (3%na,/3&nx) . (d.24)

The derivatives of w with respect to P, T and R are straight-

- forward.
(3fnw/34nP) = 1 + (3&nk/3nP)q (d.25)
(32nw/234nT) = (anK/BlnT)P (d.26)
(3&2nw/3enR) =

2 (4.27)
e) Energy Generation

_The calculation of the energy generation includés the
individual rates for the PP-chain (PPI, PPII, PPIII), the
CNO-cycle with a simplified NO approach to equilibrium, the
triple-alpha process and neutrino losses. The values of
intermediate or strong screening are applied to the above

energy producing reactions with the exception of the neutrinos.
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The coefficients of all of the reaction rates and the formulae
for most of them are taken from Fowler, Caughlan and Zimmerman
(1975).

The reaction rate for the PP-chain is actually that for
the H!(p,e*v)D? reaction and assumes that all the other reac-
"tions in the chain are relatively instantaneous. The burning

rate is then

(dx/dt),, = 4.181-10"15px2132/ 3¢ -exp(-3.380/T1/3)

¢ (0)+ (1.0 + 0.123-T2/3+ 1.09-72/3+ 0.938.T,)

9
sec™! (e.1)

where T, = T/109°K, f, is the screening factor and ¢(a)
increases monotonically from 1 + 2 as a increases from 0 + =,
The above rate is the instantaneous rate of decrease in X
(hydrogen abundance by weight) which is also the rate of
increase in Y (helium abundance by weight). The function
represents the efficiency of the conversion of D? into He",
i.e., ¢ = 1 for PPI and ¢ = 2 for PPII-PPIII. The derivation
of the different PP-chain energies follows that of Clayton
(1968). The division between PPI and PPII-PPIII is determined
by
(52,75, ,5.4) - (¥/4X) 2 +exp{-10.0/TL/ 3} (e.2)
1.93-1017« (v/4x) 2 expl-10.0/T/3}

R
m

where S,,, S,; and S,;, are the cross-sections for (pp),

(He®He3®) and (He’He"), respectively. The value of ¢ is then
$(a) = 1 + a-{(1 + 2/a)*% - 1}. (e.3)

The breakdown between PPII and PPIII is determined by the

ratio of Be’proton capture to Be’ electron capture.
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{Be’ (p,Y)B%}/{Be” (e,vy)Li?} (e.4)
- 1015-6837 .5/ (1+x) - 13/ ® e expi-10.262/1L/ %}

or |
n

By defining the fraction of reactions due to each chain,
£ = ((@ + 2/0)% - 1/((1 + 2/0)% + 3) (e.5)
11 1 - £)/(1 +7T) (e.6)
fyqp =1 -1

I fII s (e.7)

the total energy of the PP-chain (subtracting the energy of
the neutrinos which are produced) is ‘then,
SPP.= 6.398-1018-w-(dX/dt)PP erg/gm/sec (e.8)

where
P = 0.979‘f1 + 0.960'fII + 0.721‘fIII . (e.9)

In the definitions of a and I', the crosﬁ-sections of Bahcall
and Sears (1972) are used.

The derivatives of epp can be.found directly.
(3epp/astnp)p = epp-{l + (aznfs/alnp)T} (e.10)
(3epp/320T) | = eppe{-2/3 + 1.1267/TL/3 (e.11)

+ (Bans/aznT)p + (3£n¢/aznT)p + (alnw/alnT)p

1

+ (0.041-TL/3 + 0.727.72/3 + 0.938.7,)

/(1.0 + 0.123.12/3 + 1.00.72/% + 0.938.1,)}

(3%n4/320T) = (2/¢ - 1)-(1 + 2/0) %.3.333/T1/3 (e.12)
(aeny/3enT) = ™ 1.{(0.258 - 0.239/(1+T)) - (3£;/34nT)

- 0.239-fIII/(1+r)-(aan/BRnT)} (e.13)
(3%nT/88nT) = -1/6 + 3.4207/TL/3 (e.14)

(3£/920T) = -4+{a-(1 + 2/a)%-((1 + 2/a)*% + 3)2}7%
-3.333/T1/3 (e.15)
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The screening factor fs and its derivatives are described
later in this section.

In the calculation of the CNO bi-cycle, CN equilibrium
is assumed and the CN cycle is assumed to be the only source
of energy. The hydrogen burning rate due to the CN cycle:
is then

(dX/dt) oy = 1.202-107 pXXyT; 2/ 3£ cexpi-15.228/T1/3}

secl  (e-16)
and the energy produced is

€cN = 5.977-1018-(dX/dt)CN erg/gm/sec . (e.17)

The value of X (Ni“ abundance.by weight) assumes that all
the carbon and nitrogen is in the form of N!*,

Xy = 2 - Z, - Xg» - (e.18)
where Z is the total metal abundance by weight, Z, is the
weight abundance of all non-CNO metals, and Xoy is the weight
abundance of 0!®. The approach to NO equilibrium is taken
as a simple burning rate of 0'® assuming 07 equilibrium.

(dXo/dt) = 9.54-107 pxX T3 1 /2 1e cexpl-16.693/T1/3}

- 1.6-10'3-(dX/dt)CN sec™} (e.19)

Between successive modgls the value of Xy is decreased at a
rate of (dXO/dt) per second, and thus the value of Xy is cor-
respondingly increased. The derivatives of the CN energy
production are easily calculated.

(3ecy/34np)p = eCN-{I + (aznfs/alnp)T} (e.20)

(3ecn/38nT), = egy+{-2/3 + 5.076/T3/> + (aenfy/2anT) )

(e.21)
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The helium burning rate is assumed to be solely due to

the triplé-alpha process.
(dY/dt) 5, = 8.094-10"102y37; 3¢ expi-4.4100/T,} sec;l
. (e.22

€3, = 5.849-1017-(dY/dt)3a erg/gm/sec (e.23)

(aesalainp)T €3a'{2 + (aznfs/alnp)T} (e.24)

(Bssa/alnT)p €34°1-3 + 4.4109/T, + (32nfy/34nT),}

(e.25)

The neutrino losses are calculated from the analytic
form given by Beaudet, Petrosian and Salpeter (1967). These

losses are computed as a negative energy in the energy gen-

eration subroutine,
ey = ~(e, + g, + g,), (e.26)
where the subscripts ,, , and ; refer to pair, photo and

plasma neutrinos, respectively. By defining

A = kKT/mgc? = T4/5.9302 C (e.27)
£ =107 30p/u) 312 (e.28)
£(x,8) = exp{-cg}-p(&)/q(r,&) (e.29)
= exp{-cgl}-(a, + a g + azgz)
/e3+ bt e b7 s bax's) ,
one can calculate the neutrino losses,
e, = g(A) £, (x,8) exp{-2/2} (e.30)
€, = A /ug+£,(A,8) (e.31)
€y = p°/ug £5(1,E) , (e.32)

where the function g(A) is defined as

g(A) = 1.0 - 13.04-22 + 133.5.2% + 1534. -2

+ 918.6-2° . (e.33)
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The mean weight per electron He is computed as

1/ug = %5(1 + X) and (1/u)1/3 = 0.7937 + 0.2063-x

(e.34)
which is correct in either 1limit X = 0 or X = 1. The follow-

ing table lists the coefficients for the f functions.

a, a, a,

1(pair) 6.002E19 2.084E20 1.872E21
2 (photo) 4.886E10 7.580E10 6.023E10
3(plasma) 2.320E-7 8.449E-8 1.787E-8

bl b, b, c

1 9.383E-1 -4.141E-1 5.829E-2 5.5924
2 6.290E-3 7.483E-3 3.061E-4 1.5654
3 2.581E-2 1.734E-2 6.990E-4 0.56457

The derivatives of the neutrino rates can be calculated zs

follows.
(aznf/aznT)p = -(a,& + 2a2£2)/p(£) + c& (e.35)
+ b, A7+ 26,072 + 36,073 ¢ 323 /900, 8)
(3anf/3inp)p = F-{(a1& + 22,8°)/p(E) - c£ - 365/q(1,8)}

(e.36)

PAIR: (Bel/aznT)p = g,+{2/x +(82nf1/32nT)p + (9eng/34nT)}

(e.37)

(Bel/aznp)T = g,+{-1 + (alnfllaznp)T} (e.38)

PHOTO: (3e,/34nT), = €,-{5 + (32nf,/3%nT) )} (e.39)
(aez/alnp)T = ez-(aznfz/aznp)T (e.40)

PLASMA: (aea/alnT)p = ea-(aznfslaznT)p (e.41)
(3e,/3%np)p = 4212 + (32nf,/3%np)} (e.42)

(32ng/32nT) = (-26.08-A% + 534.-2% + 9204..26

+ 7348.8-28)76(0) (e.43)
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The calculation of the increase in energy generation
due to electron screening is difficult, and thus, most wor-
kers have tended to use the weak screening approximation.

The weak screening factor is fg = exp(H) where in the limit,
H= 2,°Z,+%2+4A, (e.44)
Z,,2, = charge of the two interacting nuclei

Z = r.m.s. average of the number of electrons per
nucleide, including electron degeneracy factor

Ao = 1.88-108+ (o/u,T3)*
The basic problem with the weak screening approximation is
that it is only valid for H<<1l and hence where the screening
is unimportant.
1 have adopted the formulae of DeWitt, Graboske and
Cooper (1973) and Graboske, DeWitt and Grossman (1973) for
both intermediate and strong screeniﬁg. For intermediate

screening one has

Hy = e (2402,0%000) 0%,

i (e.45)

where a is a function of (2122/22). For strong screening

one has

H. = 0.624-32/3.02/3 15, (2,,2,) + 0.316-3Y/3.5,(2,,2,)

-2/3

+ 0.460-27%/°£,(2,,2,), (e.46)

where z is the mean number of electrons per nucleide and

5/3 5/3
£.(2:,2,) = (2, + 2,0°3 - 2213 . zzi (e.47)
4/3
£,(21,25) = (2, + 20473 - 2¥3 _ 2} (e.48)
£,(2,,2,) = (2, + 2,)2/3 - 73/3 . 23 (e.49)

As can be seen from the formulation of H; and Hg, the
screening factors depend on composition in addition to density

and temperature. For my calculations I have fixed the
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composition for any given reaction and thus, also fixed the
values of j,, Z and Z (degeneracy is also ignored in the
screening). Thus, for a given reaction and composition the
screening factors can be calculated from
Fo = 1.88-10%¢ (p/13)% :
o = 1.88:107-(p/T7)" , (e.50)

and are given in the following table.

Composition H H

Reaction X Y i S
pp 0.72 0.28 0.606-50-8%0 ¢, 798.8%/3 _ 9.179
pN 1 0 3.572-80-860 5 675.52/3 _ g 303
aa 0 1 2.039-F0°880 2 052.82/3 _ g.100
aBe 0 1 3.845-F0-360 3 645.52/3 _ 0,233
3a 0 1 5.884-F0-860 5 700.%2/3 _ ¢ 423

The screening for the triple-alpha reaction is the sum of the
screenings for (aa) and (oBe). The cross-over point between
intermediate and strong screening (Hi(F;) = Hg(Fg)) for the

three basic reactions is given below.

Reaction Fy log Fy Hj(Fg)=Hg(F;)
PP 0.6276  -0.2023 0.4060
PN 0.6281 -0.2020 2.3945
3a 0.3927 -0.4059 2.6337

Since weak screening is ignored, the intermediate screening
is extended into the weak limit where the screening is negli-
gible. The derivatives of the screening factor f; = exp(H)
can be easily calculated for either tyﬁe of screening if one

expresses H as
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H = a-FE -c ., . (e.51)
where b = 2/3 for strong screening and b = 0.860 and ¢ = 0

for intermediate screening.

(32nf/38nT) , = -3+b+(H + c) (e.52)
(anfslalnp)T = +L%+be(H + C) (e.53)

Because the derivatives of the intermediate and strong screen-
ing agree to within 10% at the cross-over point, a direct
switch between the two forms--rather than an interpolation
formula--is used at the cross-over point.

The energy generation routine computes the following
quantities given the temperature, density and composition:

1) total energy generation ¢

€ = €pp * Ecy t €3, * € erg/gm/s (e,<0),

2) natural logarithm derivatives of ¢

(ae/aznT)p = (aepp/aznT)p + (aeCN/BRnT)p
+ (Bssa/aznT)p + (aev/aznT)p

(Be/aznp)T = (aePP/Ban)T + (BECN/aznp)T
+ (aesa/aznp)T + (aev/Ban)T ,

3) decrease in hydrogen (by weight) per second

(dX/dt) = (dX/dt)PP + (dX/dt)CN ,
4) decrease in 0!® (by weight) per second (dXO/dt),

5) increase in Z (actually C!? by weight) per second

(dy/dt).
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§5. Advancing the Model
a) Time Steps

The timing routine calculates the time steps based upon
a hydrogen- or helium-burning source. Let Ly (erg/s) be’
the total hydrogen-burning luminosity; and Lye, the helium
luminosity. There are two time steps,

Aty = hydrogen-burning time step

Aty total time step (i.e., for entropy and helium),
where At, # Aty only if the hydrogen shell is being shifted
outward. If Ly = 0, the following section for hydrogen-

burning is skipped.
For hydrogen-core burning (X > xmn

core c ), a time step

corresponding to a set reduction in Xcore is calculated.

Let i be the innermost point if the core is radiative (i=1)
or the outermost convective point if the core is convective.

Then, the change in X is computed,

core

g max ax i
AX . ore = mln{AXC R Af% X"},

and the time step is

- - c.1nl8, Liggi

is the mass of the core (gm) and L} is the luminosity

where m?

of the core (erg/s, assumed to be mainly hydrogen burning).
When the core-burning criterion no longer applies (Xcore
< Xﬂin), a limit 1is placed on the total amount of mass which
may be burned.
Am = Afm'Me°Xenv

m _ ¢.1018,
AtH = 6-10 Am/LH
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If there is a hydrogen-burning shell (xcore = 0), the timing
routine locates it. Let o denote the inner edge of the shell
(first point where X > 0); let 1 denote the mid-point of the
shell (X = %X, ;) ; and let 1 denote the end of the shell

(Li—Li'1 < 107%4.L or X = Xenv OT €y = 9). There is a limita-

‘tion set on the maximum depletion of hydrogen at the mid-

point of the shell.
L _ max
Aty = AX;i /(dX/dt)%
With the exception of the core-burning phase, the new hydro-

gen burning time step is limited by the previous total time

step.
1
Atg(new) = min{l.5-Aty(old), At}, Atf}
If there is to be no shell shifting then one sets Aty = AtH.
If the hydrogen shell is to be shifted cutward through Amg

in mass, then the shift time step is computed as
= . 18. L]
Atshige = 671077 Xy Amg/Ly,
and the total time step is

Aty = Bty + Atgpsiey -

If there is a hydrogen shell (X = 0), the helium

core

burning is examined. For helium-core burning (YCore > X?ln

and L., ... > 0.10 Lg), the maximum helium depletion is

AY = min{AYQ2X, A£YEX .Y },

cere core

and the helium time step is

] .1017. .
Aty = 5.85-1017.aY Mg/L

core core*

For helium-shell burning (Yeore < X@in), the amount of mass
burned through by the helium shell is limited,

- 17, ¢ .
Aty = 5.85-10°<af Mg/Ly..
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The helium time step places an upper limit on the previously
computed hydrogen time step,
At, = min{At
Aty = min{At

At

t? He}’

t, AtH}c

The following parameters used in the determination of
the time step are read in at the beginning of each model run.
Typical values are given.

XM _ 5 001

C
AXT?* = 0.04 AYT3X = 0.02
A£R3X = 0.5 Aff3X = 0.3
Af, = 0.0015 Mg
AXE3X = 0.10
Amg = 5-107% My

b) Composition Advance

- The mixing routine performs all the operations.on the
model which are necessitated by the application of the time
step to increase the age of the model. The routine first
checks that there is no mixing within the hydrogen shell if
the shell is supposed to be shifted. If there is such mix-
ing, the shifting is suppressed (i.e., set Aty = AtH).

Each mass shell is burned individually by computing the
energy generation rates for the physical conditions existing
in that mass shell from the previously converged model. Since
the program stores only the values of hydrogen, total metal

and oxygen abundance, the change in these quantities is com-

puted as
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X(new)

X(old) - (dX/dt)-At
Z(new) + (dy/dt)-At

Z(new)
X, ¢ (new) = X,¢ (01d) - (dXO/dt)~At,

where At = At, inside the hydrogen shell (X = 0) and At = Aty

elsewhere.

The routine then mixes those zones which it is instruc-

ted to do so by being given a set of indices (il, i2).

X

i1 = X4941 5 - - - =X, =X

§2 i2
= { a.*X.}/{ a.}l
j=i1 J ] jzil J

The weights aj are proportional to the amount of mass associ-
ated with shell j and are set up in the point readjustment
routine. The form of this mixing allows for arbitrary remix-
ing and overlapping of mixing zones by the sequence of indices
(i1, i2).
If the hydrogen shell is to be shifted, the routine

calculates '

As = (5 - 8272 + §%/3 - s*/a)/am10

shift ~ ’

where § = Ams/m;E << 1. The points in the hydrogen shell are

shifted by ASchiftes

sg < si <sqg > si(new) = si(old) + As

shift?
i — i 1 i *
where s log m*. The points up to a distance fg Asshift

in front of the shell are squeezed together,
sy <st<s . > si(new) = si(old) + {sqpq-si(old) }/£,
where s g4 = sy + £5°Asghift.
For all of these shifted and squeezed points the changes

in log P and log T must be preserved for the calculation of
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the entropy energy term in the subsequent model. Thus for
every si(new), one must locate sj(old) such that sj(old) <
sitnew) < sJ*1(01d) (note that j > i since si(new) > sico1d))
and then interpolate linearly in s to get the old values of

log P and log T which correspond to the new value of s. Then

the effective changes are stored,

Alog Pl

log Pi(new s) - log Pi(pre-shift s)
Alog Ti = log Ti(new s) - log Ti(pre-shift s).

For the region in front of the shell which is squeezed, it
is desirable to preserve the original composition gradient
if such a gradient exists. The values of X, Z and X, are
interpolated linearly in s as are log P and log T. Note that
the shifting process affects only the value of s and not the
values of (P, T, R, L, X, Z, X,,) with the exception of (X,
Z, X16) in the squeezed region.

. The mixing routine finally checks on the physiﬁal sense

of the new composition at all of the points.

X = max{X, 0}
Z = min{Z, 1-X}
Xy6 = max{X,,, 0.99-10 2.z}

The first two requirements are obvious; the third requirement
brings the value of X;¢ up to the approximate equilibrium
value while turning off the X,, burning rate which is calcu-
lated if X,¢ > 10'3-ZCN0. The value of Zcyy is easily com-
puted as Z-yq = Z - Z7 where ZJ is the original weight abun-
dance of all non-CNO metals. This method allows for the en-

richment of CNO elements from the helium burning.
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¢} Mixing Zomes

The mixing of the composition in convective regions of
the stellar model is conventional. Consecutive mass shells,
which are determined to be '"convective" (Vr > Vad) in the
-previously converged model, are mixed together.

If there is a helium-burning convective zone, the semi-
convective instability is treated as an over-shooting
(Castellani, Giannone and Renzini 1971) rather than a true
semi-convection zone (Robertson and Faulkner 1972). The
composition is first burned and mixed according to the stan-
dard convection zones. At the first radiative point outside
a helium convective zone, the quantity f = Vrint/vreXt is
defined where the radiative gradient is computed with the
(s, P, T, R, L) values of the radiative point and with the
composition of both the radiative point (®X%) and the interior
con#ective zbné (int). The original convective zone is ex-
tended outward through the radiative region for all the points
at which f-v_ > Vad-

This over-shooting region is restricted to the helium
core (X = 0) and is limited by the condition of Castellani,
Giannone and Renzini (1971) which defines a maximum radius

Rpax of the over-shoot mixing.

Rmax 3 int s
-’fR (1 - u(R)/ulft)edar < (1 - vadém/vrént)-Lc-At
c / (40m-P-R2)
where the subscript . refers to the (s, P, T, R, L) values

at the edge of the original convective zone. The composition
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is then re-mixed from the beginning of the convective zone

to the maximum extent of the over-shoot region.
d) Point Readjustment

The point readjustment routine refloats all of the
points between successive models. This routine starts with
the central point and places each subsequent new point i
so that all of the following criteria are met:

si . gi-1 < Aspax
log P - 10g P11 < AP .
i - i1 < AfL-LM (M = outermost point).
All of the new values are interpolated linearly in s by 1lo-
cating the old point j such that sJ(o01d) < si(new) < si*1(o14).

The fundamental variables (s, P, T, R, L)

+h
wail

»

’ composition

(X, Z, X,4), the density and the entropy terms (Alog P, Alog T)

are refloated between the center and outermost points. These

variables are stored in temporary arrays and are transferred
to the original arrays once the process is completed. 1In
addition to the 15t anda Mth points remaining fixed, other
points may be retained:

1) the first radiative point (outer edge of convec-
tive zone),

2) the innermost point of the convective envelope,
3) the edge of the helium core (X = 0),
4) composition discontinuities, XJ - x3-1 > AXgisc

j . ,i-1
or ZJ z3°L > AZgisc-
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The point routine then recalculates the weights assigned
to each mass shell based upon the mass values at the preced-

ing and following mid-points.

m; = 1051
ay = %"(mg + my)

a- = 1/2.(mi+1 - mi_l) for i = 2, M-1

Miotal - %2° (my * My.q)
The value m; defines the location of the ith shell, and a;
is the number of grams contained in the shell.

Additionally, the point routine adjusts the temperature
of the outermost MR point by adding a new point or deleting
some old points. Given the desired temperature range T i,
to Tpax, then if Ty < Tpjip the outermost point j<M such that
T; > T = %+ (Tpin * Thax) 1s selected as the new fit point.
The points j+1 to M are deleted. If Ty > T,., the process
is more'complicated. The last envelope which was integrated
will have stored the values of (sg, Pg, Te, Rg) for the first
inward integration step in which T, > T. If (sg, Pg, Tg, Rg)
are the values for that envelopé at the fit point (i.e.,
sg = sy), then the new point M+l is added with the following

values.
SM+l T Se
log Py, q = log Py + (log P, - log Pg)
log Tysq = log Ty + (log Tg - log Tg)
log Ry,q = log Ry + (log R, - log Rg)
Ly+1 = Ly Xpe1 = XM

IMe1 = IM X1eMe1 = X16M
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§6. Model Calculation Sequence

The following list describes the sequence of calcula-
tions which is used in computing a series of stellar models.

(0) Input the model and compute a time step.

(1) Zero the entropy terms (Alog P = Alog T = 0),

(2) Locate the mixing zones and advance the composi-
tion and hydrogen shell for the given time step.

(3) Readjust the points in the model.

(4) Compute the new age of the model and reset any of
the physical '"constants" (e.g., G in the Brans-
Dicke case).

(5) Retaining the old envelope triangle and surface
boundary conditions, do N; iterations for cor-
rections to the dependent variables (P,T,R,L)
and apply a given fraction of the corrections.

(6) If necessary, relocate the envelope triangle for
the partially converged model and compute new
envelopes and surface boundary conditions.

(7) Do N, iterations or until the model converges.

{8a) If the corrections are excessively large at any
time or if the model does not converge after N,
iterations, then retain the previous model which
has been stored on tape or disk and stop.

(8b) If the model has converged,

(i) compute a new time step,

(1i) perform the requested printing and punching,

(iii) store the model temporarily on tape or
disk, over-writing the previous model,

(iv) return to step (1).
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APPENDIX B. ISOCHRONES

The calculation of isochrones is based upon the ability
to interpolate intermediate-maés evolutionary tracks from a
set of computed tracks. For example, given the complete
evolutionary sequence for a 0.90 My star and a 1.00 Me star,
one should be able to describe the evolution of a 0.95 Mg
star to within a well-defined error. The accuracy of the
final isochrones will depend upon the accuracy of these inter-
polated tracks which will in turn depend upon the method of
interpolation.

For the interpolation procedure, I claim that the posi-
tions of different mass stars which are at equivalent evolu-
.tionarf phases (EEPs) are related (e.g., same central hydro-
gen abundance, same helium core mass). At these EEP points
it is useful to compare the ages and luminosities in order
to determine their variation with stellar mass. The age-mass
relationship of some EEP points is shown in figure 1 for the
STD models (Y=0.25, Z=0.02, G=G,). The relationship between
log(age) and 1og(M/M9) is nearly linear with some curvature
at the high-mass end. The same data for the BDI models (see
Chapter III) is plotted in figure 2 with the ZAMS relatiomn-
ship for the STD models shown for comparison. Even though
G is variable, the values of log(age) and log(M/Me) are still
nearly linear over this range. The major difference between
the STD and BDI models is that the slope of the line for the

BDI models changes noticeably between different EEPs. This

187
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is expected since the integrated effect of a decreasing G
will cause a relatively faster evolution of the high-mass
stars which complete their evolution in the younger, high-G

universe.

The luminosity at these EEPs is compared with stellar

‘mass for the STD models in figure 3 and for the BDI models

in figure 4. Once again, log(L/Lg) and log(M/Mg) are approx-
imately linear in this range and the slope of the relation-
ship changes more radically for the BDI models.

From the observed linearity in figures 1-4, one can
expect to reliably determine the age and luminosity for an
intermediate-mass star at these phases of evolution by line-
arly interpolating in 1og(M/MH). I shall assume that the
effective temperature can be interpolated in the same manner
as the luminosity. Thus, for a given stellar mass for which
there exist bounding tracks, the fundamenial quantities--age,
log L and log T gg--can be easily calculated at each of the
EEP points. In order to determine the evolution of such a
star between the EEP points, it is necessary to define more
equivalent points in the original tracks. The insertion of
such points between the original EEP points is done by divid-
ing the evolutionary track between a pair of EEP points into
equal "lengths'". The number of intervals between the same
EEP points for different mass tracks must be the same, and
then the inserted points can be treated as EEP points. The
major ambiguity in this process is the selection of the metric:

how does one measure the "length"? The length between two
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points of the originalily computed evolutionary track can be
any combination of variables. For example, defining
(length)? = (a-Alog L)% + (b-Alog Teff)2 + (c-hage)?,
where (a,b,c) are arbitrary scaling factors, includes the
three fundamental parameters of the evolution. For the defi-
nition of length I have have arbitrarily ignored the age and
have used the length of the track as viewed in a reasonably
scaled (log L, log To¢g)-diagram: (a, b, c) = (1, 10, 0).
For the giant branch I have used only log L to define the
length: (a,b,c) = (1, 0, 0). If the selection of the ori-
ginal EEP points is made wisely, these newly added points
should not critically affect the interpolation procedure.

Now one has a set of evelutionary tracks for a range of
masses such that, starting with the ZAMS points, each succes-
sive point is a corresponding EEP point for ail of the masses.
- Not all of the tracks will have the same number of points
since it is unnecessary to extend the evolution of low-mass
stars beyond the ages in which one is interested. The con-
struction of an isochrone for a time T proceeds as follows:

1. Select an EEP point.

2. Locate the pair of tracks (i,j) whose ages at the
selected EEP point bound the desired age T.

T3 € 1T < Tj

(If the value of T cannot be bounded, then the two
tracks with the nearest times must be used. However,

the extrapolation may have considerably larger errors
than the interpolation.)

3. Define the interpolating weight,

f = (logt - log ri)/(log Ty - log T13;),
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and use it to interpolate the value of the mass,
log M = log M; + f(log Mj - log M;),

and the values of log L/L9 and log Teff in the same

manner with the same weighting factor.

4. Repeating the process for all the EEP points, one

has a sequence of (M, log L, log Teff) points for
a given age 1 (i.e., an isochrone).

This procedure has a distinct advantage over the standard
procedure of feeding in a sequence of masses and computing
their location in the HR diagram. Using the above technique
guarantees placing a "star" at every EEP point. The density
of points along the isochrone is equal to the density of EEP
points, and thus one is able to have a uniform sample of
stars through even the fastest phases of evolution. A rapid
evolutionary phase can be discerned by the small increment
in mass between successive points. Between a pair of points
(i,i+1) . in the isochrone, the number density of "stars" is
readily calculated as

NCL,i+1) = o (M3+M;,1)} = (M, -N;),
where ¢{M} is the initial mass .function. Similarly, each
point i can be allotted a weighting factor for use in the
computation of integrated luminosities,

W; = ¢{Mi}-%°(Mi+1'- M;_1)-

In order to estimate the accuracy of this interpolation
procedure, I have tried to devise a rigorous test: (i) use
two evolutionary tracks to interpolate an intermediate track

which is already known; (ii) instead of comparing only the

positions of the true and the interpolated tracks in the
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(log L, 1log Teff)-diagram, compare also the ages along each
of the tracks. Focr this purpose the interpolation procedure
is as follows:
1. Define the interpolating weight factor,
= (log M - log M;)/(log M;,q - log Mj),
where (i,i+1) are the bounding tracks.
2. For every pair of EEP points in the bounding tracks,
interpolate the values of (log T, log L, log Teff)
linearly using f.
3. One now has the interpolated track for mass M. To
find the value of (log L, log Teff) at a given age
T,, locate the points on the interpolated track

which bound 7, and interpolate (log L, log Tgs¢)
linearly with T.

This test is made for the 1.10 My STD model track by

.using the 1.20 My and 1.00 Mg STD tracks for the interpolation.

This particular case should reveal the largest errors since
the log t-log M and log L-log M relationships are most non-
linear in this mass range. The results are shown in figure
5, where at a given set of ages the location of the true 1.10
Mg star in the (log L, log Tggf)-diagram is compared with the
location of the interpolated 1.10 My star. This process is
repeated for the BDI models using the 1.10 Mg and 0.90 My
tracks to interpolate the 1.00 Mg track and is shown in figure
6. Taking into account both the shape of the track and the
time scales along the track, the interpolated track agrees
very well with the true track in both cases. Any similar
errors in the final isochrones should be smaller than the

errors in this test since the most non-linear region was tested
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and the mass interval (0.2 Mg) is twice that to be used in

the isochrone construction.
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log-LL—e- —
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3.8 3.7
Iog Teff

Fig.5.---Log L/Le vs. log Teff interpolation for STD models.
The two bounding tracks (1.2 and 1.0 My) along with the
true intermediate-mass track (1.1 Me) are shown. At a
range of evolutionary ages the true location of the 1.1
Mg star is denoted by tick marks. These are to be com-
pared with the dots which are the location of the 1.1 My

star as predicted from the interpolation with the bounding

tracks.
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Fig.6.---Log L/LO vs. log Togg interpolation for BDI models.
This figure is the same as Fig. § except for the masses
of the bounding tracks (1.1 and 0.9 MS) and the inter-

mediate track (1.0 Me).
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APPENDIX C. CCLOR CALIBRATIONS

This appendix describes the conversion of my theoretical
(log L, log Teff) values for solar abundance stars into the

observable broad-band UBVRIJKL magnitudes and colors of

" Johnson (1966). For both main sequence (Class ¥) stars and

giant (Class III) stars the (color, color)- and (color, bolo-
metric correction)-calibrations are established. 1In order
to obtain a reliable (éolor, log Teff)-calibration for my
stellar models, the Teff calibrations in the literature must
be discarded. Instead, the observed color-magnitude sequences
are converted into color-Mbol sequences with the already es-
tablished calibrations. Then they are compared with my (log L,
log T g¢) sequences to give a (color, iog Teff)~re1ationship.
The resultant calibration reproduces the observed color-
magnitude sequencés with my own stellar models.

| For the class ¥ color-color relationships, the (B-V),
(V-R), (V-J3), (V-K) and (V-L) colors of Johnson (1966) are
calibrated against (V-I). The (U-V) color (Johnson 1966,
Morton and Adams 1968, FitzGerald 1970) is calibrated against
(B-V) as is the bolometric correction (Schlesinger 1969).
No corrections for TiO-blanketing are applied to the lower

main sequence. This color-color calibration for spectral

class A0 ¥ through M5 ¥ is given in table 1.

At each {B-V) value in this color calibration, a value
of My is interpolated ffom the observed zero-age main sequence
(ZAMS) of Johnson (1963) and Allen (1963) which is listed in
table 3. The absolute visual magnitude is cogverted to a
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bolometric magnitude, My 4 = MV - B.C., which then is compared
with my theoretical ZAMS to interpolate a log T ., valus for
each tabulated (B-V) value. My ZAMS spans the mass range 0.5-
1.2 Me for composition (Y,Z) = (0.25,0.02) and was extrapolated
to cover the full range of the color calibration. The resul-
ting (log Tegs> color)-relationship for the main sequence 1is
listed also in table 1.

The Teff-cdlor relationship for the class III giant stars
is derived in a manner similar to that for the main sequence
stars. All of the colors and the bolometric correction are
calibrated against the (V-I) color. The data of Johnson
(1966) is used for early giants; and the data of Lee (1970),
for M-giants. The TiO-blanketing in the V-magnitude, 6V, is
taken from Wing (1967) and is calibréted against spectral
type. The bolometric magnitude is then given by Mbol = MV
- B.C. - 8V. Two separate observed giant branch (GB) sequences
which are listed in table 4 are used to derive the T c¢-color
relationship. The (My, B-V) GB of M67 (Racine 1971, Eggen
1972) is used for G and K giants; and the (MI, R-I) GB of the
old disk population (Eggen 1973), for M-giants. For the early
giants I combined my 1.2 Mg GB track with the M67 GB to deter-
mine T, ¢¢ at each tabulated (V-1); for the M0-M3 giants, my
1.2 Mg GB track with the old disk GB; and for the M4-M6
giants, the mean of my 1.0 My and 1.2 Mg asymptotic GB exten-
sions with the old disk GB. The three resulting T, g¢-color
calibrations agree to within 0.002 in log T, ¢¢ at the two

junctures points. The adepted T, gg-color calibration for
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giant stars is listed with the color-color calibration in
table 2. The first two lines of table 2 (class ¥ colors) are
included so that the class III colors merge smoothly with the
class ¥ colors.

The Toge-color calibrations for class ¥ and class III
stars has been derived. The sub-giant stars (class IXY) are
not considered separately because they could not be adequately
calibrated. The super-giant stars can be safely ignored be-
cause all of the stars in this study are of relatively low
mass. Thus, to compute the visual magnitude and colors of
a star from its (log L, 1log Teff) value, one interpolates in
tables 1 and 2 with respect to log Teff and obtains the colors,
-8V and bolometric correction for the corresponding class ¥
and- -where possible--class III starg. If the star lies within
one magnitude of the theoretical-ZAMS bolometric magnitude
at its Tefg value, then the class ¥ colors are adopted. If
the star is more than two magnitudes above the ZAMS, only
class III values are employed. In the middle of these two
cases, the values are interpolated between class III and class
Y. Once these quantities have been derived, the luminosity
in any broad-band color (e.g., C) can be calculated from,

log Lg/Lg = log L/Lg - 0.4-{B.C. + &V - (V-C)}.
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TABLE 1. CLASS Y CALIBRATIONS

Sp.Cl. B.C. U-V B-V V-R V-1 V-J V-K V-L logT ¢¢
A0 0.30 0.00 0.00 0.03 0.01 0.00-0.02 0.00 4.0796
A2 0.20 0.12 0.06 0.08 0.09 0.11 0.13 0.16 4.0447
A4 0.13 0.21 0.11 0.13 0.17 0.21 0.27 0.31 4.0112
A7 0.08 0.31 0.20 0.20 0.29 0.36 0.48 0.55 3.9538
0.07 0.36 0.27 0.25 0.39 0.48 0.65 0.75 3.9095

FO 0.07 0.37 0.31 0.28 .45 0.55 0.75 0.87 3.8836
0.07 0.38 0.33 0.30 0.47 0.58 0.79 0.90 3.8694

F2 0.06 0.40 0.38 0.35 0.55 0.68 0.93 1.07 3.8348
0.05 0.42 0.42 0.38 0.60 0.74 1.00 1.17 3.8112

F5 0.05 0.46 0.45 0.39 0.63 0.77 1.05 1.23 3.7948
0.06 0.52 0.50 0.43 0.69 0.86 1.15 1.34 3.7732

F8 0.08 0.61 0.55 0.47 0.75 0.94 1.25 1.44 3.7599
GO 0.09 0.72 0.60 ¢.49 0.80 1.01 1.34 1.52 3.7471
G5 0.13 0.91 0.68 0.55 0.91 1.17 1.53 1.72 3.7284
0.18 1.09 0.75 0.60 0.99 1.28 1.69 1.88 3.7149

KO 0.21 1.22 0.80 0.63 1.05 1.36 1.81 1.98 3.7052
K2 0.31 1.58 0.92 0.75 1.23 1.58 2.16 2.26 3.6831
0.44 1.81 1.00 0.82 1.35 1.72 2.34 2.43 3.6702

K5 0.76 2.25 1.18 0.99 1.62 2.04 2.75 2.84 3.6434
1.15 2.61 1.37 1.19 2.01 2.49 3.33 3.51 3.6134

MO 1.37 2.68 1.42 1.26 2.16 2.67 3.55 3.73 3.6057
M1 1.65 2.70 1.49 1.39 2.43 3.03 3.92 4.11 3.5800
M2 1.98 2.70 1.51 1.50 2.69 35.37 4.27 4.47 3.5794
M4 2.30 2.70 1.55 1.69 3.18 3.96 4.85 5.17 3.5401
M5 2.60 2.77 1.60 1.83 3.54 4.37 5.26 5.80 3.4780
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TABLE 2. CLASS III CALIBRATIONS
Sp.Cl. B.C. &V U-V B-V V-R V-I V-J V-K V-L logTeff
(G0Y) 0.13 0.00 0.91 0.68 0.55 0.91 1.17 1.53 1.72 3.7284
(KOY) 0.16 0.00 1.22 0.80 9.63 1.05 1.36 1.81 1.92 3.6811
G5 0.20 0.00 1.55 0.92 0.69 1.17 1.52 2.08 2.18 3.6481
KO 0.30 0.00 1.93 1.04 0.77 1.30 1.71 2.35 2.47 3.6241
K2 0.42 0.00 2.32 1.16 0.84 1.42 1.87 2.59 2.73 3.6045
K3 06.61 G.00 2.74 1.30 0.96 1.61 2.12 2.92 3.07 3.5803
K4 0.81 0.05 3.07 1.41 1.06 1.81 2.36 3.24 3.39 3.5567
MO 1.14 0.20 3.42 1.56 1.24 2.14 2.77 3.74 3.89 3.5214
M1 1.24 0.25 3.48 1.58 1.29 2.24 2.89 3.90 4.06 3.5130
M2 1.45 0.30 3.52 1.61 1.37 2.45 3.12 4.16 4.33 3.4970
M3 1.81 0.47 3.49 1.62 1.52 2.82 3.53 4.63 4.81 3.4710
M4 2.42 0.76 3.33 1.62 1.78 3.38 4.19 5.34 5.54 3.4430
M5 3.15 1.25 3.04 1.59 2.13 4.06 4.96 6.20 6.44 3.4100
M6 4.10 1.65 2.70 1.58 2.70 4.90 5.90 7.20 7.50 3.3000




TABLE 3. - OBSERVED ZAMS

Mo (B-V) Mo (B-V)
1.10  -0.05 5.88  0.80
1.50  0.00 6.32  0.90
1.74  +0.05 6.78  1.00
2.00  0.10 7.20 1.10
2.45  0.20 7.66  1.20
2.95  0.30 8.11  1.30
3.56  0.40 8.6 1.40
4.23  0.50 9.6 1.50
4.79  0.60 12.0 1.60
5.38  0.70 16.0 1.70
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TABLE 4. OBSERVED GLANT BRANCH
M67 01d Disk

My (B-V) M; (R-1)

3.56 0.83 -1.00 0.562

3.00 0.91 -1.50 0.625

2.50 0.96 -2.00 0.687

2.00 1.00 -2.40 0.750

1.50 1.07 -2.95  0.875

1.00 1.15 -3.20 0.937

0.50 1.25 -3.60 1.062

0.00 1.35 -4.05 1.250

' -4.20 1.312

-4.40 1.437

-4.90 1.687

-5.40 1.937

-5.65 2.062
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