Statistician

Clara Leopo

About Me

- Clara Leopo
- Born & Raised in Santa Ana, California
- Mesa Unida: Community Service & Engagement Commissioner
- Working on B.S. in Data Science @ UCI

Middle School

- MacArthur Fundamental, Santa Ana
- Enjoyed Math and reading, did not enjoy natural sciences
- Wasn't sure on what I wanted to do

High School

- Segerstrom High School
- Thought I wanted to become a nurse
- Still enjoyed math, HW didn't seem like work to me
- Took AP Math class
- Started thinking about college

College

- Attended Santa Ana Community College
- Took General Education Courses, majored in Math
- Transferred to UCI
- Currently working on Data
 Science Major at UCI
 Department of Statistics

Data Science from the Real World

- <u>Web Search</u> How do search engines like Google or Bing rank search results?
 - Shopping How does Amazon forecast how many items it needs to store in its warehouses?

Google

amazon

Statistician \$\$, Job Growth

- Median pay (annual): 80,110 USD (2015)
- Median pay (hourly): 38.51 USD (2015)
- Entry level education: Master's degree
- Projected 10-year growth: 34% (2014)
- Number of jobs: 30,000 (2014)

What does a Statistician Do?

- works with formulas and data to help solve problems in industry, academia, and government
- works with theoretical or applied statistics. The profession exists in both the private and public sectors
- solve real-world problems in business, engineering, healthcare, or other fields.

- Clinical Data Coordinator
- Clinical Statistics Manager
- Education Research Analyst
- Human Resource Statistician
- Institutional Research Director
- Mathematical Statistician,

Let's Get Some Practice!

Let's Get Some Practice!

X	f	xf	(x-x̄)	(x-x̄)^2	The Normal Distribution Curve
					Kouenb
1	2	2	-1	1	
2	2	4	0	0	
3	2	6	1	1	-1 SD 68% of population 1 SD
	n=	xf= 12		Σ (x- x̄)^2=2	-2 SD %% of population 2 SD
	_				$\left(\sum (X - \overline{X})^2 \right)^2$
Mean:	ean: $\overline{\mathbf{X}} = \underline{\Sigma \mathbf{X}}$		<u>×</u>	Standard I (populatio	Deviation $S = \sqrt{\frac{2(x-x)}{N}}$
12/6=2		n		2/6= .333	where S = the standard deviation of a sample, Σ means "sum of," X = each value in the data set, X = mean of all values in the data set, N = number of values in the data set.

THANK YOU!

